id: 1 unit: def __init__() file: research/gam/gam/trainer/trainer_classification_gcn.py start line: 0 end line: 0 size: 234 LOC McCabe index: 18 number of parameters: 38 id: 2 unit: def evaluate() file: research/a2n/train.py start line: 0 end line: 0 size: 217 LOC McCabe index: 28 number of parameters: 0 id: 3 unit: def __init__() file: research/gam/gam/trainer/trainer_classification.py start line: 0 end line: 0 size: 204 LOC McCabe index: 32 number of parameters: 38 id: 4 unit: def train() file: research/gam/gam/trainer/trainer_cotrain.py start line: 0 end line: 0 size: 190 LOC McCabe index: 29 number of parameters: 3 id: 5 unit: def __init__() file: research/gam/gam/trainer/trainer_agreement.py start line: 0 end line: 0 size: 146 LOC McCabe index: 22 number of parameters: 33 id: 6 unit: def __init__() file: research/gam/gam/trainer/trainer_cotrain.py start line: 0 end line: 0 size: 137 LOC McCabe index: 5 number of parameters: 66 id: 7 unit: def train() file: research/gam/gam/trainer/trainer_agreement.py start line: 0 end line: 0 size: 133 LOC McCabe index: 10 number of parameters: 4 id: 8 unit: def main() file: research/gam/gam/experiments/run_train_gam_graph.py start line: 0 end line: 0 size: 133 LOC McCabe index: 25 number of parameters: 1 id: 9 unit: def main() file: research/gam/gam/experiments/run_train_gam.py start line: 0 end line: 0 size: 132 LOC McCabe index: 22 number of parameters: 1 id: 10 unit: def train() file: research/gam/gam/trainer/trainer_classification.py start line: 0 end line: 0 size: 107 LOC McCabe index: 25 number of parameters: 4 id: 11 unit: def embed_single_feature() file: research/carls/models/caml/sparse_features.py start line: 0 end line: 0 size: 102 LOC McCabe index: 28 number of parameters: 9 id: 12 unit: def main() file: research/kg_hyp_emb/train.py start line: 0 end line: 0 size: 102 LOC McCabe index: 19 number of parameters: 1 id: 13 unit: def train() file: research/gam/gam/trainer/trainer_classification_gcn.py start line: 0 end line: 0 size: 95 LOC McCabe index: 21 number of parameters: 4 id: 14 unit: def featurize_each_example() file: research/a2n/dataset.py start line: 0 end line: 0 size: 91 LOC McCabe index: 23 number of parameters: 2 id: 15 unit: std::string DebugString() file: research/carls/base/input_context_helper.cc start line: 616 end line: 703 size: 88 LOC McCabe index: 28 number of parameters: 1 id: 16 unit: def _get_agreement_reg_loss() file: research/gam/gam/trainer/trainer_classification.py start line: 0 end line: 0 size: 85 LOC McCabe index: 7 number of parameters: 4 id: 17 unit: def train() file: research/a2n/train.py start line: 0 end line: 0 size: 81 LOC McCabe index: 10 number of parameters: 0 id: 18 unit: def _get_agreement_reg_loss() file: research/gam/gam/trainer/trainer_classification_gcn.py start line: 0 end line: 0 size: 80 LOC McCabe index: 10 number of parameters: 3 id: 19 unit: def train() file: research/multi_representation_adversary/multi_representation_adversary/trainer.py start line: 0 end line: 0 size: 80 LOC McCabe index: 6 number of parameters: 9 id: 20 unit: def _get_encoding() file: research/gam/gam/models/wide_resnet.py start line: 0 end line: 0 size: 79 LOC McCabe index: 9 number of parameters: 5 id: 21 unit: Status KnowledgeBankGrpcServiceImpl::Update() file: research/carls/knowledge_bank_grpc_service.cc start line: 96 end line: 184 size: 77 LOC McCabe index: 15 number of parameters: 3 id: 22 unit: def attention_kbc_model() file: research/a2n/models.py start line: 0 end line: 0 size: 76 LOC McCabe index: 4 number of parameters: 4 id: 23 unit: absl::Status DynamicEmbeddingManager::NegativeSampling() file: research/carls/dynamic_embedding_manager.cc start line: 347 end line: 434 size: 72 LOC McCabe index: 11 number of parameters: 9 id: 24 unit: def read_graph() file: research/a2n/graph.py start line: 0 end line: 0 size: 70 LOC McCabe index: 26 number of parameters: 2 id: 25 unit: def _construct_layers() file: research/gam/gam/models/cnn.py start line: 0 end line: 0 size: 69 LOC McCabe index: 1 number of parameters: 2 id: 26 unit: def add_graph_regularization() file: neural_structured_learning/estimator/graph_regularization.py start line: 0 end line: 0 size: 65 LOC McCabe index: 18 number of parameters: 4 id: 27 unit: absl::Status DynamicEmbeddingManager::Lookup() file: research/carls/dynamic_embedding_manager.cc start line: 111 end line: 183 size: 64 LOC McCabe index: 17 number of parameters: 3 id: 28 unit: def evaluate() file: research/multi_representation_adversary/multi_representation_adversary/evaluator.py start line: 0 end line: 0 size: 64 LOC McCabe index: 17 number of parameters: 11 id: 29 unit: absl::Status BruteForceTopkSampler::SampleInternal() file: research/carls/candidate_sampling/brute_force_topk_sampler.cc start line: 91 end line: 155 size: 62 LOC McCabe index: 11 number of parameters: 4 id: 30 unit: absl::Status NegativeSampler::SampleUnique() file: research/carls/candidate_sampling/negative_sampler.cc start line: 155 end line: 229 size: 62 LOC McCabe index: 9 number of parameters: 5 id: 31 unit: def load_from_planetoid_files() file: research/gam/gam/data/loaders.py start line: 0 end line: 0 size: 58 LOC McCabe index: 4 number of parameters: 2 id: 32 unit: Status KnowledgeBankGrpcServiceImpl::StartSessionIfNecessary() file: research/carls/knowledge_bank_grpc_service.cc start line: 353 end line: 409 size: 56 LOC McCabe index: 17 number of parameters: 3 id: 33 unit: absl::Status Prune() file: research/carls/base/input_context_helper.cc start line: 556 end line: 614 size: 54 LOC McCabe index: 21 number of parameters: 3 id: 34 unit: def _construct_feed_dict() file: research/gam/gam/trainer/trainer_classification.py start line: 0 end line: 0 size: 53 LOC McCabe index: 9 number of parameters: 7 id: 35 unit: def _construct_feed_dict() file: research/gam/gam/trainer/trainer_classification_gcn.py start line: 0 end line: 0 size: 52 LOC McCabe index: 8 number of parameters: 7 id: 36 unit: def get_model_cls() file: research/gam/gam/experiments/helper.py start line: 0 end line: 0 size: 52 LOC McCabe index: 9 number of parameters: 6 id: 37 unit: def add_adversarial_regularization() file: neural_structured_learning/estimator/adversarial_regularization.py start line: 0 end line: 0 size: 51 LOC McCabe index: 15 number of parameters: 3 id: 38 unit: def gen_neighbor() file: neural_structured_learning/lib/adversarial_neighbor.py start line: 0 end line: 0 size: 51 LOC McCabe index: 10 number of parameters: 3 id: 39 unit: bool IsPortAvailable() file: research/carls/kbs_server_helper.cc start line: 34 end line: 92 size: 51 LOC McCabe index: 12 number of parameters: 2 id: 40 unit: def copy() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 51 LOC McCabe index: 14 number of parameters: 14 id: 41 unit: def add_noisy_edges() file: research/gam/gam/data/robustness.py start line: 0 end line: 0 size: 51 LOC McCabe index: 14 number of parameters: 3 id: 42 unit: def _get_train_edge_iterator() file: research/gam/gam/trainer/trainer_agreement.py start line: 0 end line: 0 size: 50 LOC McCabe index: 13 number of parameters: 6 id: 43 unit: def compute_dataset_statistics() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 49 LOC McCabe index: 9 number of parameters: 4 id: 44 unit: def get_model_agr() file: research/gam/gam/experiments/helper.py start line: 0 end line: 0 size: 49 LOC McCabe index: 8 number of parameters: 6 id: 45 unit: def build_resnet_v1() file: research/multi_representation_adversary/multi_representation_adversary/resnet.py start line: 0 end line: 0 size: 49 LOC McCabe index: 9 number of parameters: 6 id: 46 unit: def create_model() file: research/a2n/train.py start line: 0 end line: 0 size: 48 LOC McCabe index: 14 number of parameters: 2 id: 47 unit: def _select_samples_to_label() file: research/gam/gam/trainer/trainer_cotrain.py start line: 0 end line: 0 size: 48 LOC McCabe index: 14 number of parameters: 4 id: 48 unit: grpc::Status KnowledgeBankGrpcServiceImpl::Sample() file: research/carls/knowledge_bank_grpc_service.cc start line: 186 end line: 234 size: 47 LOC McCabe index: 12 number of parameters: 3 id: 49 unit: grpc::Status KnowledgeBankGrpcServiceImpl::MemoryLookup() file: research/carls/knowledge_bank_grpc_service.cc start line: 236 end line: 282 size: 47 LOC McCabe index: 11 number of parameters: 3 id: 50 unit: void Compute() file: research/carls/kernels/dynamic_embedding_ops.cc start line: 192 end line: 245 size: 47 LOC McCabe index: 7 number of parameters: 1 id: 51 unit: absl::Status Merge() file: research/carls/base/input_context_helper.cc start line: 508 end line: 554 size: 46 LOC McCabe index: 14 number of parameters: 4 id: 52 unit: absl::Status DynamicEmbeddingManager::LookupGaussianCluster() file: research/carls/dynamic_embedding_manager.cc start line: 296 end line: 345 size: 46 LOC McCabe index: 5 number of parameters: 6 id: 53 unit: def build_from_adjacency_matrix() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 46 LOC McCabe index: 6 number of parameters: 8 id: 54 unit: def pack_nodes_and_edges() file: neural_structured_learning/experimental/gnn.py start line: 0 end line: 0 size: 45 LOC McCabe index: 9 number of parameters: 5 id: 55 unit: def predict_label_by_agreement() file: research/gam/gam/trainer/trainer_agreement.py start line: 0 end line: 0 size: 45 LOC McCabe index: 9 number of parameters: 4 id: 56 unit: std::unique_ptr DynamicEmbeddingManager::Create() file: research/carls/dynamic_embedding_manager.cc start line: 55 end line: 102 size: 44 LOC McCabe index: 8 number of parameters: 4 id: 57 unit: def make_cora_dataset() file: neural_structured_learning/experimental/gnn.py start line: 0 end line: 0 size: 42 LOC McCabe index: 3 number of parameters: 6 id: 58 unit: def pairwise_distance_wrapper() file: neural_structured_learning/lib/distances.py start line: 0 end line: 0 size: 42 LOC McCabe index: 9 number of parameters: 4 id: 59 unit: def _join_examples() file: neural_structured_learning/tools/pack_nbrs.py start line: 0 end line: 0 size: 42 LOC McCabe index: 13 number of parameters: 4 id: 60 unit: absl::Status LeveldbKnowledgeBank::LoadDataFromLevelDb() file: research/carls/knowledge_bank/leveldb_knowledge_bank.cc start line: 255 end line: 306 size: 42 LOC McCabe index: 7 number of parameters: 2 id: 61 unit: def lookup() file: research/carls/models/caml/sparse_features.py start line: 0 end line: 0 size: 42 LOC McCabe index: 12 number of parameters: 2 id: 62 unit: void Compute() file: research/carls/kernels/sampled_logits_ops.cc start line: 108 end line: 155 size: 41 LOC McCabe index: 2 number of parameters: 1 id: 63 unit: absl::Status DynamicEmbeddingManager::TopK() file: research/carls/dynamic_embedding_manager.cc start line: 436 end line: 484 size: 41 LOC McCabe index: 5 number of parameters: 4 id: 64 unit: def get_output_shapes() file: research/a2n/dataset.py start line: 0 end line: 0 size: 40 LOC McCabe index: 8 number of parameters: 1 id: 65 unit: def batch_iterator() file: research/gam/gam/trainer/trainer_base.py start line: 0 end line: 0 size: 40 LOC McCabe index: 15 number of parameters: 6 id: 66 unit: std::vector GradientDescentOptimizer::Apply() file: research/carls/gradient_descent/gradient_descent_optimizer.cc start line: 73 end line: 113 size: 39 LOC McCabe index: 10 number of parameters: 3 id: 67 unit: Status KnowledgeBankGrpcServiceImpl::Lookup() file: research/carls/knowledge_bank_grpc_service.cc start line: 55 end line: 94 size: 39 LOC McCabe index: 8 number of parameters: 3 id: 68 unit: def call() file: research/carls/dynamic_normalization.py start line: 0 end line: 0 size: 39 LOC McCabe index: 5 number of parameters: 3 id: 69 unit: def split_train_val_unlabeled() file: research/gam/gam/data/preprocessing.py start line: 0 end line: 0 size: 39 LOC McCabe index: 5 number of parameters: 5 id: 70 unit: def build_from_splits() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 38 LOC McCabe index: 2 number of parameters: 11 id: 71 unit: def copy() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 38 LOC McCabe index: 11 number of parameters: 11 id: 72 unit: def edge_iterator() file: research/gam/gam/trainer/trainer_classification.py start line: 0 end line: 0 size: 38 LOC McCabe index: 9 number of parameters: 4 id: 73 unit: def edge_iterator() file: research/gam/gam/trainer/trainer_classification_gcn.py start line: 0 end line: 0 size: 38 LOC McCabe index: 9 number of parameters: 4 id: 74 unit: EmbeddingVectorProto InitializeEmbeddingWithSeed() file: research/carls/knowledge_bank/initializer_helper.cc start line: 92 end line: 129 size: 37 LOC McCabe index: 8 number of parameters: 4 id: 75 unit: def random_in_norm_ball() file: neural_structured_learning/lib/utils.py start line: 0 end line: 0 size: 36 LOC McCabe index: 17 number of parameters: 3 id: 76 unit: def attack() file: research/multi_representation_adversary/multi_representation_adversary/attacks.py start line: 0 end line: 0 size: 36 LOC McCabe index: 4 number of parameters: 6 id: 77 unit: def __init__() file: research/kg_hyp_emb/models/base.py start line: 0 end line: 0 size: 36 LOC McCabe index: 1 number of parameters: 3 id: 78 unit: def load_dataset() file: research/gnn-survey/utils.py start line: 0 end line: 0 size: 36 LOC McCabe index: 7 number of parameters: 3 id: 79 unit: def generate_by_partitions() file: research/neural_clustering/data_generators/mog.py start line: 0 end line: 0 size: 35 LOC McCabe index: 10 number of parameters: 3 id: 80 unit: int PickUnusedPortOrDie() file: research/carls/kbs_server_helper.cc start line: 98 end line: 135 size: 35 LOC McCabe index: 7 number of parameters: 0 id: 81 unit: def copy() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 35 LOC McCabe index: 10 number of parameters: 10 id: 82 unit: def train() file: research/gnn-survey/train.py start line: 0 end line: 0 size: 35 LOC McCabe index: 8 number of parameters: 7 id: 83 unit: def maximize_within_unit_norm() file: neural_structured_learning/lib/utils.py start line: 0 end line: 0 size: 34 LOC McCabe index: 15 number of parameters: 3 id: 84 unit: def adversarial_loss() file: neural_structured_learning/keras/adversarial_regularization.py start line: 0 end line: 0 size: 34 LOC McCabe index: 10 number of parameters: 10 id: 85 unit: void GaussianMemory::AddInputToCluster() file: research/carls/memory_store/gaussian_memory.cc start line: 330 end line: 367 size: 34 LOC McCabe index: 7 number of parameters: 2 id: 86 unit: def load_data_tf_datasets() file: research/gam/gam/data/loaders.py start line: 0 end line: 0 size: 34 LOC McCabe index: 1 number of parameters: 4 id: 87 unit: def load_data_realistic_ssl() file: research/gam/gam/data/loaders.py start line: 0 end line: 0 size: 34 LOC McCabe index: 4 number of parameters: 3 id: 88 unit: EmbeddingVectorProto InitializeEmbedding() file: research/carls/knowledge_bank/initializer_helper.cc start line: 57 end line: 90 size: 33 LOC McCabe index: 8 number of parameters: 2 id: 89 unit: def __init__() file: research/carls/dynamic_normalization.py start line: 0 end line: 0 size: 33 LOC McCabe index: 2 number of parameters: 16 id: 90 unit: def build() file: research/carls/dynamic_normalization.py start line: 0 end line: 0 size: 33 LOC McCabe index: 17 number of parameters: 2 id: 91 unit: def get_graph_nbrhd_paths_randwalk() file: research/a2n/dataset.py start line: 0 end line: 0 size: 33 LOC McCabe index: 9 number of parameters: 8 id: 92 unit: def build_from_adjacency_matrix() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 33 LOC McCabe index: 3 number of parameters: 8 id: 93 unit: def _resnet_layer() file: research/multi_representation_adversary/multi_representation_adversary/resnet.py start line: 0 end line: 0 size: 33 LOC McCabe index: 4 number of parameters: 8 id: 94 unit: absl::Status NegativeSampler::LogUniformSampleWithReplacement() file: research/carls/candidate_sampling/negative_sampler.cc start line: 231 end line: 266 size: 32 LOC McCabe index: 3 number of parameters: 5 id: 95 unit: absl::Status NegativeSampler::UniformSampleWithReplacement() file: research/carls/candidate_sampling/negative_sampler.cc start line: 268 end line: 303 size: 32 LOC McCabe index: 4 number of parameters: 5 id: 96 unit: def embed() file: research/a2n/encoders.py start line: 0 end line: 0 size: 32 LOC McCabe index: 3 number of parameters: 3 id: 97 unit: def attack() file: research/multi_representation_adversary/multi_representation_adversary/attacks.py start line: 0 end line: 0 size: 32 LOC McCabe index: 2 number of parameters: 6 id: 98 unit: def unpack_neighbor_features() file: neural_structured_learning/lib/utils.py start line: 0 end line: 0 size: 31 LOC McCabe index: 10 number of parameters: 3 id: 99 unit: absl::Status KnowledgeBank::Export() file: research/carls/knowledge_bank/knowledge_bank.cc start line: 98 end line: 131 size: 31 LOC McCabe index: 6 number of parameters: 3 id: 100 unit: Status KnowledgeBankGrpcServiceImpl::Export() file: research/carls/knowledge_bank_grpc_service.cc start line: 284 end line: 314 size: 31 LOC McCabe index: 6 number of parameters: 3 id: 101 unit: Status KnowledgeBankGrpcServiceImpl::Import() file: research/carls/knowledge_bank_grpc_service.cc start line: 316 end line: 346 size: 31 LOC McCabe index: 7 number of parameters: 3 id: 102 unit: void Compute() file: research/carls/kernels/dynamic_embedding_ops.cc start line: 145 end line: 178 size: 31 LOC McCabe index: 3 number of parameters: 1 id: 103 unit: def __init__() file: research/a2n/dataset.py start line: 0 end line: 0 size: 31 LOC McCabe index: 7 number of parameters: 12 id: 104 unit: def generate_virtual_adversarial_perturbation() file: research/gam/gam/trainer/adversarial_sparse.py start line: 0 end line: 0 size: 31 LOC McCabe index: 3 number of parameters: 7 id: 105 unit: def eval() file: research/kg_hyp_emb/models/base.py start line: 0 end line: 0 size: 31 LOC McCabe index: 8 number of parameters: 4 id: 106 unit: def _read_tfrecord_examples() file: neural_structured_learning/tools/build_graph.py start line: 0 end line: 0 size: 30 LOC McCabe index: 6 number of parameters: 3 id: 107 unit: def perturb_on_batch() file: neural_structured_learning/keras/adversarial_regularization.py start line: 0 end line: 0 size: 30 LOC McCabe index: 9 number of parameters: 3 id: 108 unit: absl::Status ValidateInitializer() file: research/carls/knowledge_bank/initializer_helper.cc start line: 26 end line: 55 size: 30 LOC McCabe index: 8 number of parameters: 2 id: 109 unit: bool FindFeatureWeights() file: research/carls/base/input_context_helper.cc start line: 451 end line: 480 size: 30 LOC McCabe index: 12 number of parameters: 2 id: 110 unit: absl::Status DynamicEmbeddingManager::UpdateGradients() file: research/carls/dynamic_embedding_manager.cc start line: 259 end line: 294 size: 30 LOC McCabe index: 5 number of parameters: 2 id: 111 unit: def __init__() file: research/a2n/encoders.py start line: 0 end line: 0 size: 30 LOC McCabe index: 5 number of parameters: 9 id: 112 unit: def build_model() file: research/gnn-survey/utils.py start line: 0 end line: 0 size: 30 LOC McCabe index: 6 number of parameters: 9 id: 113 unit: absl::Status GaussianMemory::BatchLookupWithGrowInternal() file: research/carls/memory_store/gaussian_memory.cc start line: 211 end line: 242 size: 29 LOC McCabe index: 6 number of parameters: 2 id: 114 unit: def _partitioned_dynamic_embedding_lookup() file: research/carls/models/caml/sparse_features.py start line: 0 end line: 0 size: 29 LOC McCabe index: 5 number of parameters: 7 id: 115 unit: def __init__() file: research/gam/gam/models/gcn.py start line: 0 end line: 0 size: 29 LOC McCabe index: 4 number of parameters: 11 id: 116 unit: void TopN::PushInternal() file: research/carls/base/top_n.h start line: 205 end line: 249 size: 28 LOC McCabe index: 12 number of parameters: 2 id: 117 unit: absl::Status WriteFileString() file: research/carls/base/file_helper.cc start line: 76 end line: 103 size: 28 LOC McCabe index: 6 number of parameters: 3 id: 118 unit: inline std::string CurrentStackTrace() file: research/carls/base/status_helper.cc start line: 40 end line: 72 size: 28 LOC McCabe index: 5 number of parameters: 0 id: 119 unit: absl::Status FindFeatureValuesAndWeights() file: research/carls/base/input_context_helper.h start line: 149 end line: 176 size: 28 LOC McCabe index: 7 number of parameters: 3 id: 120 unit: void Compute() file: research/carls/kernels/dynamic_memory_ops.cc start line: 93 end line: 125 size: 28 LOC McCabe index: 1 number of parameters: 1 id: 121 unit: absl::Status DynamicEmbeddingManager::UpdateValues() file: research/carls/dynamic_embedding_manager.cc start line: 205 end line: 236 size: 28 LOC McCabe index: 4 number of parameters: 2 id: 122 unit: def __init__() file: research/a2n/encoders.py start line: 0 end line: 0 size: 28 LOC McCabe index: 5 number of parameters: 8 id: 123 unit: def __init__() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 28 LOC McCabe index: 2 number of parameters: 13 id: 124 unit: def __init__() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 28 LOC McCabe index: 1 number of parameters: 14 id: 125 unit: def __init__() file: research/gam/gam/models/wide_resnet.py start line: 0 end line: 0 size: 28 LOC McCabe index: 1 number of parameters: 14 id: 126 unit: def __init__() file: research/gnn-survey/models.py start line: 0 end line: 0 size: 28 LOC McCabe index: 3 number of parameters: 8 id: 127 unit: def call() file: research/neural_clustering/models/ncp_wrapper.py start line: 0 end line: 0 size: 27 LOC McCabe index: 8 number of parameters: 4 id: 128 unit: absl::Status GaussianMemory::ImportInternal() file: research/carls/memory_store/gaussian_memory.cc start line: 400 end line: 428 size: 27 LOC McCabe index: 4 number of parameters: 1 id: 129 unit: static void LogError() file: research/carls/base/status_helper.cc start line: 76 end line: 102 size: 27 LOC McCabe index: 8 number of parameters: 5 id: 130 unit: void Compute() file: research/carls/kernels/io_ops.cc start line: 83 end line: 114 size: 27 LOC McCabe index: 2 number of parameters: 1 id: 131 unit: void Compute() file: research/carls/kernels/topk_ops.cc start line: 72 end line: 102 size: 27 LOC McCabe index: 2 number of parameters: 1 id: 132 unit: void Compute() file: research/carls/kernels/sampled_logits_ops.cc start line: 167 end line: 204 size: 27 LOC McCabe index: 1 number of parameters: 1 id: 133 unit: def distmult_kbc_model() file: research/a2n/models.py start line: 0 end line: 0 size: 27 LOC McCabe index: 1 number of parameters: 4 id: 134 unit: def _evaluate() file: research/gam/gam/trainer/trainer_classification.py start line: 0 end line: 0 size: 27 LOC McCabe index: 4 number of parameters: 5 id: 135 unit: def encode_onehot() file: research/gnn-survey/utils.py start line: 0 end line: 0 size: 27 LOC McCabe index: 2 number of parameters: 2 id: 136 unit: def jensen_shannon_divergence() file: neural_structured_learning/lib/distances.py start line: 0 end line: 0 size: 26 LOC McCabe index: 13 number of parameters: 7 id: 137 unit: def make_missing_neighbor_inputs() file: neural_structured_learning/keras/layers/neighbor_features.py start line: 0 end line: 0 size: 26 LOC McCabe index: 6 number of parameters: 3 id: 138 unit: InputContext ToInputContext() file: research/carls/base/input_context_helper.cc start line: 705 end line: 730 size: 26 LOC McCabe index: 4 number of parameters: 1 id: 139 unit: def get_loss_vat() file: research/gam/gam/trainer/adversarial_sparse.py start line: 0 end line: 0 size: 26 LOC McCabe index: 1 number of parameters: 7 id: 140 unit: def __init__() file: neural_structured_learning/experimental/gnn.py start line: 0 end line: 0 size: 25 LOC McCabe index: 2 number of parameters: 6 id: 141 unit: def _virtual_adv_regularizer() file: neural_structured_learning/lib/regularizer.py start line: 0 end line: 0 size: 25 LOC McCabe index: 3 number of parameters: 5 id: 142 unit: def call() file: neural_structured_learning/keras/adversarial_regularization.py start line: 0 end line: 0 size: 25 LOC McCabe index: 4 number of parameters: 3 id: 143 unit: absl::Status NegativeSampler::SampleInternal() file: research/carls/candidate_sampling/negative_sampler.cc start line: 128 end line: 153 size: 25 LOC McCabe index: 5 number of parameters: 4 id: 144 unit: def compute_sampled_logits() file: research/carls/candidate_sampling_ops.py start line: 0 end line: 0 size: 25 LOC McCabe index: 3 number of parameters: 7 id: 145 unit: def create_tuple_store() file: research/a2n/graph.py start line: 0 end line: 0 size: 25 LOC McCabe index: 12 number of parameters: 3 id: 146 unit: def attend() file: research/a2n/encoders.py start line: 0 end line: 0 size: 25 LOC McCabe index: 3 number of parameters: 6 id: 147 unit: def build_from_features() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 25 LOC McCabe index: 2 number of parameters: 11 id: 148 unit: def _create_weight_decay_var() file: research/gam/gam/trainer/trainer_agreement.py start line: 0 end line: 0 size: 25 LOC McCabe index: 4 number of parameters: 3 id: 149 unit: def _select_val_set() file: research/gam/gam/trainer/trainer_agreement.py start line: 0 end line: 0 size: 25 LOC McCabe index: 10 number of parameters: 5 id: 150 unit: def predict_label_by_agreement() file: research/gam/gam/trainer/trainer_agreement.py start line: 0 end line: 0 size: 25 LOC McCabe index: 6 number of parameters: 4 id: 151 unit: def build() file: research/gnn-survey/layers.py start line: 0 end line: 0 size: 25 LOC McCabe index: 4 number of parameters: 2 id: 152 unit: def __init__() file: research/gnn-survey/models.py start line: 0 end line: 0 size: 25 LOC McCabe index: 2 number of parameters: 8 id: 153 unit: def __init__() file: research/gnn-survey/models.py start line: 0 end line: 0 size: 25 LOC McCabe index: 3 number of parameters: 9 id: 154 unit: def kl_divergence() file: neural_structured_learning/lib/distances.py start line: 0 end line: 0 size: 24 LOC McCabe index: 2 number of parameters: 7 id: 155 unit: std::unique_ptr GradientDescentOptimizer::Create() file: research/carls/gradient_descent/gradient_descent_optimizer.cc start line: 37 end line: 65 size: 24 LOC McCabe index: 8 number of parameters: 2 id: 156 unit: std::string JoinPathImpl() file: research/carls/base/file_helper.cc start line: 30 end line: 57 size: 24 LOC McCabe index: 7 number of parameters: 1 id: 157 unit: def get_graph_nbrhd_embd_text() file: research/a2n/dataset.py start line: 0 end line: 0 size: 24 LOC McCabe index: 5 number of parameters: 3 id: 158 unit: def sample_or_pad() file: research/a2n/dataset.py start line: 0 end line: 0 size: 24 LOC McCabe index: 7 number of parameters: 3 id: 159 unit: def create_dataset_iterator() file: research/a2n/dataset.py start line: 0 end line: 0 size: 24 LOC McCabe index: 6 number of parameters: 4 id: 160 unit: def __init__() file: research/a2n/encoders.py start line: 0 end line: 0 size: 24 LOC McCabe index: 4 number of parameters: 9 id: 161 unit: def __init__() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 24 LOC McCabe index: 2 number of parameters: 10 id: 162 unit: def check_convergence() file: research/gam/gam/trainer/trainer_base.py start line: 0 end line: 0 size: 24 LOC McCabe index: 6 number of parameters: 7 id: 163 unit: def _generate_edges() file: neural_structured_learning/tools/build_graph.py start line: 0 end line: 0 size: 23 LOC McCabe index: 7 number of parameters: 2 id: 164 unit: def update_states_by_cluster_assignment() file: research/neural_clustering/models/ncp_base.py start line: 0 end line: 0 size: 23 LOC McCabe index: 4 number of parameters: 4 id: 165 unit: absl::Status ReadBinaryProto() file: research/carls/base/proto_helper.cc start line: 80 end line: 104 size: 23 LOC McCabe index: 4 number of parameters: 2 id: 166 unit: iterator find() file: research/carls/base/async_node_hash_map.h start line: 250 end line: 276 size: 23 LOC McCabe index: 4 number of parameters: 1 id: 167 unit: void Compute() file: research/carls/kernels/dynamic_embedding_ops.cc start line: 257 end line: 287 size: 23 LOC McCabe index: 1 number of parameters: 1 id: 168 unit: def build() file: research/carls/models/caml/sparse_features.py start line: 0 end line: 0 size: 23 LOC McCabe index: 3 number of parameters: 2 id: 169 unit: def attend() file: research/a2n/encoders.py start line: 0 end line: 0 size: 23 LOC McCabe index: 2 number of parameters: 6 id: 170 unit: def generate_virtual_adversarial_perturbation() file: research/gam/gam/trainer/adversarial_dense.py start line: 0 end line: 0 size: 23 LOC McCabe index: 3 number of parameters: 5 id: 171 unit: def get_predictions_and_params() file: research/gam/gam/models/gcn.py start line: 0 end line: 0 size: 23 LOC McCabe index: 4 number of parameters: 4 id: 172 unit: def load_and_aggregate() file: research/multi_representation_adversary/multi_representation_adversary/evaluator.py start line: 0 end line: 0 size: 23 LOC McCabe index: 7 number of parameters: 4 id: 173 unit: def __init__() file: neural_structured_learning/lib/adversarial_neighbor.py start line: 0 end line: 0 size: 22 LOC McCabe index: 8 number of parameters: 8 id: 174 unit: def pack_nbrs() file: neural_structured_learning/tools/pack_nbrs.py start line: 0 end line: 0 size: 22 LOC McCabe index: 8 number of parameters: 7 id: 175 unit: def _compute_loss_and_metrics() file: neural_structured_learning/keras/adversarial_regularization.py start line: 0 end line: 0 size: 22 LOC McCabe index: 5 number of parameters: 5 id: 176 unit: GaussianMemory::DistanceToNearestCluster GaussianMemory::FindNearestCluster() file: research/carls/memory_store/gaussian_memory.cc start line: 293 end line: 315 size: 22 LOC McCabe index: 4 number of parameters: 1 id: 177 unit: absl::Status LeveldbKnowledgeBank::LookupWithUpdate() file: research/carls/knowledge_bank/leveldb_knowledge_bank.cc start line: 189 end line: 212 size: 22 LOC McCabe index: 3 number of parameters: 2 id: 178 unit: Status SetInputShape() file: research/carls/kernels/dynamic_embedding_ops.cc start line: 46 end line: 68 size: 22 LOC McCabe index: 3 number of parameters: 1 id: 179 unit: def __init__() file: research/a2n/encoders.py start line: 0 end line: 0 size: 22 LOC McCabe index: 4 number of parameters: 8 id: 180 unit: def _pair_iterator() file: research/gam/gam/trainer/trainer_agreement.py start line: 0 end line: 0 size: 22 LOC McCabe index: 11 number of parameters: 4 id: 181 unit: def __init__() file: research/gam/gam/models/gcn.py start line: 0 end line: 0 size: 22 LOC McCabe index: 2 number of parameters: 7 id: 182 unit: def get_predictions_and_params() file: research/gam/gam/models/mlp.py start line: 0 end line: 0 size: 22 LOC McCabe index: 4 number of parameters: 4 id: 183 unit: def get_loss() file: research/gam/gam/models/wide_resnet.py start line: 0 end line: 0 size: 22 LOC McCabe index: 5 number of parameters: 6 id: 184 unit: def __init__() file: research/kg_hyp_emb/models/euclidean.py start line: 0 end line: 0 size: 22 LOC McCabe index: 1 number of parameters: 3 id: 185 unit: def __init__() file: research/kg_hyp_emb/models/hyperbolic.py start line: 0 end line: 0 size: 22 LOC McCabe index: 1 number of parameters: 3 id: 186 unit: def normalize() file: neural_structured_learning/lib/utils.py start line: 0 end line: 0 size: 21 LOC McCabe index: 5 number of parameters: 3 id: 187 unit: def make_adv_reg_config() file: neural_structured_learning/configs/configs.py start line: 0 end line: 0 size: 21 LOC McCabe index: 1 number of parameters: 1 id: 188 unit: def make_graph_reg_config() file: neural_structured_learning/configs/configs.py start line: 0 end line: 0 size: 21 LOC McCabe index: 1 number of parameters: 1 id: 189 unit: def _prepare_metric_fns() file: neural_structured_learning/keras/adversarial_regularization.py start line: 0 end line: 0 size: 21 LOC McCabe index: 15 number of parameters: 3 id: 190 unit: def compile() file: neural_structured_learning/keras/adversarial_regularization.py start line: 0 end line: 0 size: 21 LOC McCabe index: 7 number of parameters: 6 id: 191 unit: absl::Status MakeErrorStream::Impl::GetStatus() file: research/carls/base/status_helper.cc start line: 172 end line: 199 size: 21 LOC McCabe index: 4 number of parameters: 0 id: 192 unit: def __init__() file: research/a2n/encoders.py start line: 0 end line: 0 size: 21 LOC McCabe index: 4 number of parameters: 7 id: 193 unit: def get_predictions_and_params() file: research/gam/gam/models/cnn.py start line: 0 end line: 0 size: 21 LOC McCabe index: 4 number of parameters: 4 id: 194 unit: def get_encoding_and_params() file: research/gam/gam/models/wide_resnet.py start line: 0 end line: 0 size: 21 LOC McCabe index: 4 number of parameters: 5 id: 195 unit: def project_to_ball() file: neural_structured_learning/lib/utils.py start line: 0 end line: 0 size: 20 LOC McCabe index: 4 number of parameters: 4 id: 196 unit: def generate_batch() file: research/neural_clustering/data_generators/partition.py start line: 0 end line: 0 size: 20 LOC McCabe index: 10 number of parameters: 3 id: 197 unit: def call() file: research/neural_clustering/models/ncp_base.py start line: 0 end line: 0 size: 20 LOC McCabe index: 2 number of parameters: 3 id: 198 unit: absl::Status GaussianMemory::ProcessResults() file: research/carls/memory_store/gaussian_memory.cc start line: 252 end line: 271 size: 20 LOC McCabe index: 2 number of parameters: 3 id: 199 unit: void KnowledgeBank::BatchLookup() file: research/carls/knowledge_bank/knowledge_bank.cc start line: 41 end line: 60 size: 20 LOC McCabe index: 4 number of parameters: 2 id: 200 unit: void KnowledgeBank::BatchLookupWithUpdate() file: research/carls/knowledge_bank/knowledge_bank.cc start line: 62 end line: 81 size: 20 LOC McCabe index: 4 number of parameters: 2 id: 201 unit: def attend() file: research/a2n/encoders.py start line: 0 end line: 0 size: 20 LOC McCabe index: 2 number of parameters: 6 id: 202 unit: def __init__() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 20 LOC McCabe index: 5 number of parameters: 4 id: 203 unit: def restore_state_from_file() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 20 LOC McCabe index: 5 number of parameters: 2 id: 204 unit: def _create_weight_decay_var() file: research/gam/gam/trainer/trainer_classification.py start line: 0 end line: 0 size: 20 LOC McCabe index: 4 number of parameters: 3 id: 205 unit: def _create_weight_decay_var() file: research/gam/gam/trainer/trainer_classification_gcn.py start line: 0 end line: 0 size: 20 LOC McCabe index: 4 number of parameters: 3 id: 206 unit: def _project() file: research/gam/gam/models/models_base.py start line: 0 end line: 0 size: 20 LOC McCabe index: 4 number of parameters: 3 id: 207 unit: def call() file: research/gnn-survey/layers.py start line: 0 end line: 0 size: 20 LOC McCabe index: 1 number of parameters: 2 id: 208 unit: def call() file: research/carls/graph_regularization.py start line: 0 end line: 0 size: 19 LOC McCabe index: 9 number of parameters: 4 id: 209 unit: def sampled_sigmoid_loss() file: research/carls/candidate_sampling_ops.py start line: 0 end line: 0 size: 19 LOC McCabe index: 1 number of parameters: 7 id: 210 unit: std::string GetExtensionType() file: research/carls/base/proto_helper.cc start line: 47 end line: 66 size: 19 LOC McCabe index: 4 number of parameters: 2 id: 211 unit: absl::Status WriteTextProto() file: research/carls/base/proto_helper.cc start line: 106 end line: 124 size: 19 LOC McCabe index: 3 number of parameters: 3 id: 212 unit: std::pair insert_or_assign_impl() file: research/carls/base/async_node_hash_map.h start line: 329 end line: 349 size: 19 LOC McCabe index: 7 number of parameters: 2 id: 213 unit: def pair_iterator() file: research/gam/gam/trainer/trainer_classification.py start line: 0 end line: 0 size: 19 LOC McCabe index: 3 number of parameters: 5 id: 214 unit: def predict() file: research/gam/gam/trainer/trainer_classification.py start line: 0 end line: 0 size: 19 LOC McCabe index: 3 number of parameters: 4 id: 215 unit: def pair_iterator() file: research/gam/gam/trainer/trainer_classification_gcn.py start line: 0 end line: 0 size: 19 LOC McCabe index: 3 number of parameters: 5 id: 216 unit: def get_loss() file: research/gam/gam/models/cnn.py start line: 0 end line: 0 size: 19 LOC McCabe index: 6 number of parameters: 6 id: 217 unit: def get_loss() file: research/gam/gam/models/gcn.py start line: 0 end line: 0 size: 19 LOC McCabe index: 6 number of parameters: 6 id: 218 unit: def _construct_layers() file: research/gam/gam/models/mlp.py start line: 0 end line: 0 size: 19 LOC McCabe index: 2 number of parameters: 2 id: 219 unit: def get_loss() file: research/gam/gam/models/mlp.py start line: 0 end line: 0 size: 19 LOC McCabe index: 6 number of parameters: 6 id: 220 unit: def __init__() file: research/gnn-survey/layers.py start line: 0 end line: 0 size: 19 LOC McCabe index: 2 number of parameters: 7 id: 221 unit: def _compute_perturbations() file: neural_structured_learning/lib/adversarial_neighbor.py start line: 0 end line: 0 size: 18 LOC McCabe index: 4 number of parameters: 4 id: 222 unit: def gen_adv_neighbor() file: neural_structured_learning/lib/adversarial_neighbor.py start line: 0 end line: 0 size: 18 LOC McCabe index: 1 number of parameters: 9 id: 223 unit: def get_target_indices() file: neural_structured_learning/lib/utils.py start line: 0 end line: 0 size: 18 LOC McCabe index: 5 number of parameters: 3 id: 224 unit: def build() file: neural_structured_learning/tools/build_graph.py start line: 0 end line: 0 size: 18 LOC McCabe index: 2 number of parameters: 3 id: 225 unit: def __init__() file: research/neural_clustering/models/ncp_models.py start line: 0 end line: 0 size: 18 LOC McCabe index: 1 number of parameters: 8 id: 226 unit: def dynamic_embedding_lookup() file: research/carls/dynamic_embedding_ops.py start line: 0 end line: 0 size: 18 LOC McCabe index: 3 number of parameters: 6 id: 227 unit: absl::Status MemoryStore::Export() file: research/carls/memory_store/memory_store.cc start line: 53 end line: 71 size: 18 LOC McCabe index: 4 number of parameters: 3 id: 228 unit: def dynamic_gaussian_memory_lookup() file: research/carls/dynamic_memory_ops.py start line: 0 end line: 0 size: 18 LOC McCabe index: 4 number of parameters: 7 id: 229 unit: def sampled_softmax_loss() file: research/carls/candidate_sampling_ops.py start line: 0 end line: 0 size: 18 LOC McCabe index: 1 number of parameters: 7 id: 230 unit: EmbeddingVectorProto GradientDescentOptimizer::ApplyAdagrad() file: research/carls/gradient_descent/gradient_descent_optimizer.cc start line: 125 end line: 143 size: 18 LOC McCabe index: 3 number of parameters: 2 id: 231 unit: absl::Status InProtoKnowledgeBank::LookupWithUpdate() file: research/carls/knowledge_bank/in_proto_knowledge_bank.cc start line: 108 end line: 127 size: 18 LOC McCabe index: 2 number of parameters: 2 id: 232 unit: absl::Status BuildInputFeatureWithWeights() file: research/carls/base/input_context_helper.cc start line: 106 end line: 123 size: 18 LOC McCabe index: 3 number of parameters: 3 id: 233 unit: absl::Status BuildInputFeatureWithWeights() file: research/carls/base/input_context_helper.cc start line: 127 end line: 144 size: 18 LOC McCabe index: 3 number of parameters: 3 id: 234 unit: absl::Status BuildInputFeatureWithWeights() file: research/carls/base/input_context_helper.cc start line: 148 end line: 165 size: 18 LOC McCabe index: 3 number of parameters: 3 id: 235 unit: absl::Status BuildInputFeatureWithWeights() file: research/carls/base/input_context_helper.cc start line: 169 end line: 186 size: 18 LOC McCabe index: 3 number of parameters: 3 id: 236 unit: absl::Status BuildInputFeatureWithWeights() file: research/carls/base/input_context_helper.cc start line: 190 end line: 207 size: 18 LOC McCabe index: 3 number of parameters: 3 id: 237 unit: absl::Status BuildInputFeatureWithWeightsAndDebugInfo() file: research/carls/base/input_context_helper.cc start line: 291 end line: 308 size: 18 LOC McCabe index: 3 number of parameters: 4 id: 238 unit: absl::Status BuildInputFeatureWithWeightsAndDebugInfo() file: research/carls/base/input_context_helper.cc start line: 332 end line: 349 size: 18 LOC McCabe index: 3 number of parameters: 4 id: 239 unit: absl::Status BuildInputFeatureWithWeightsAndDebugInfo() file: research/carls/base/input_context_helper.cc start line: 353 end line: 370 size: 18 LOC McCabe index: 3 number of parameters: 4 id: 240 unit: absl::Status DynamicEmbeddingManager::CheckInputForUpdate() file: research/carls/dynamic_embedding_manager.cc start line: 185 end line: 203 size: 18 LOC McCabe index: 3 number of parameters: 2 id: 241 unit: absl::Status DynamicEmbeddingManager::LookupInternal() file: research/carls/dynamic_embedding_manager.cc start line: 238 end line: 257 size: 18 LOC McCabe index: 3 number of parameters: 3 id: 242 unit: absl::Status DynamicEmbeddingManager::Export() file: research/carls/dynamic_embedding_manager.cc start line: 486 end line: 503 size: 18 LOC McCabe index: 2 number of parameters: 2 id: 243 unit: def __init__() file: research/carls/models/caml/sparse_features.py start line: 0 end line: 0 size: 18 LOC McCabe index: 2 number of parameters: 9 id: 244 unit: def get_train_op() file: research/a2n/train.py start line: 0 end line: 0 size: 18 LOC McCabe index: 8 number of parameters: 4 id: 245 unit: def load_data_planetoid() file: research/gam/gam/data/loaders.py start line: 0 end line: 0 size: 18 LOC McCabe index: 2 number of parameters: 5 id: 246 unit: def _eval_train() file: research/gam/gam/trainer/trainer_agreement.py start line: 0 end line: 0 size: 18 LOC McCabe index: 4 number of parameters: 3 id: 247 unit: def get_encoding_and_params() file: research/gam/gam/models/cnn.py start line: 0 end line: 0 size: 18 LOC McCabe index: 5 number of parameters: 3 id: 248 unit: def _evaluate_dataset() file: research/multi_representation_adversary/multi_representation_adversary/evaluator.py start line: 0 end line: 0 size: 18 LOC McCabe index: 6 number of parameters: 4 id: 249 unit: def _compute_gradient() file: neural_structured_learning/lib/adversarial_neighbor.py start line: 0 end line: 0 size: 17 LOC McCabe index: 7 number of parameters: 4 id: 250 unit: def _interleave_and_merge() file: neural_structured_learning/lib/utils.py start line: 0 end line: 0 size: 17 LOC McCabe index: 7 number of parameters: 4 id: 251 unit: def build_graph() file: neural_structured_learning/tools/build_graph.py start line: 0 end line: 0 size: 17 LOC McCabe index: 1 number of parameters: 8 id: 252 unit: def _read_tfrecord_examples() file: neural_structured_learning/tools/pack_nbrs.py start line: 0 end line: 0 size: 17 LOC McCabe index: 2 number of parameters: 2 id: 253 unit: def call() file: neural_structured_learning/keras/graph_regularization.py start line: 0 end line: 0 size: 17 LOC McCabe index: 7 number of parameters: 4 id: 254 unit: absl::Status GaussianMemory::BatchLookupWithUpdateInternal() file: research/carls/memory_store/gaussian_memory.cc start line: 189 end line: 209 size: 17 LOC McCabe index: 3 number of parameters: 2 id: 255 unit: absl::Status LeveldbKnowledgeBank::ExportInternal() file: research/carls/knowledge_bank/leveldb_knowledge_bank.cc start line: 232 end line: 248 size: 17 LOC McCabe index: 2 number of parameters: 2 id: 256 unit: absl::Status BuildInputFeatureWithWeightsAndDebugInfo() file: research/carls/base/input_context_helper.cc start line: 312 end line: 328 size: 17 LOC McCabe index: 3 number of parameters: 4 id: 257 unit: absl::Status BuildInputFeatureWithWeightsAndDebugInfo() file: research/carls/base/input_context_helper.cc start line: 374 end line: 390 size: 17 LOC McCabe index: 3 number of parameters: 4 id: 258 unit: def save_knowledge_bank() file: research/carls/io_ops.py start line: 0 end line: 0 size: 17 LOC McCabe index: 5 number of parameters: 5 id: 259 unit: def get_graph_nbrhd_paths() file: research/a2n/dataset.py start line: 0 end line: 0 size: 17 LOC McCabe index: 4 number of parameters: 3 id: 260 unit: def save_embedding_vocabs() file: research/a2n/utils.py start line: 0 end line: 0 size: 17 LOC McCabe index: 8 number of parameters: 3 id: 261 unit: def create_agreement_prediction() file: research/gam/gam/trainer/trainer_agreement.py start line: 0 end line: 0 size: 17 LOC McCabe index: 6 number of parameters: 5 id: 262 unit: def _eval_random_pairs() file: research/gam/gam/trainer/trainer_agreement.py start line: 0 end line: 0 size: 17 LOC McCabe index: 1 number of parameters: 3 id: 263 unit: def get_examples() file: research/kg_hyp_emb/datasets/datasets.py start line: 0 end line: 0 size: 17 LOC McCabe index: 4 number of parameters: 2 id: 264 unit: def __init__() file: research/kg_hyp_emb/learning/trainer.py start line: 0 end line: 0 size: 17 LOC McCabe index: 3 number of parameters: 3 id: 265 unit: def get_queries() file: research/kg_hyp_emb/models/hyperbolic.py start line: 0 end line: 0 size: 17 LOC McCabe index: 1 number of parameters: 2 id: 266 unit: def build() file: research/gnn-survey/layers.py start line: 0 end line: 0 size: 17 LOC McCabe index: 1 number of parameters: 2 id: 267 unit: def main() file: research/gnn-survey/train.py start line: 0 end line: 0 size: 17 LOC McCabe index: 4 number of parameters: 1 id: 268 unit: def __init__() file: research/gnn-survey/models.py start line: 0 end line: 0 size: 17 LOC McCabe index: 4 number of parameters: 6 id: 269 unit: def graph_call() file: neural_structured_learning/experimental/gnn.py start line: 0 end line: 0 size: 16 LOC McCabe index: 2 number of parameters: 3 id: 270 unit: def _main() file: neural_structured_learning/tools/build_graph.py start line: 0 end line: 0 size: 16 LOC McCabe index: 2 number of parameters: 1 id: 271 unit: def _prepare_loss_weights() file: neural_structured_learning/keras/adversarial_regularization.py start line: 0 end line: 0 size: 16 LOC McCabe index: 8 number of parameters: 2 id: 272 unit: SampledResult BuildSampledResult() file: research/carls/candidate_sampling/negative_sampler.cc start line: 89 end line: 104 size: 16 LOC McCabe index: 2 number of parameters: 4 id: 273 unit: float GaussianMemory::ComputeDistance() file: research/carls/memory_store/gaussian_memory.cc start line: 273 end line: 291 size: 16 LOC McCabe index: 4 number of parameters: 2 id: 274 unit: GaussianMemoryCheckpointMetaData GaussianMemory::ConvertToCheckpointMetaData() file: research/carls/memory_store/gaussian_memory.cc start line: 383 end line: 398 size: 16 LOC McCabe index: 4 number of parameters: 0 id: 275 unit: absl::Status LeveldbKnowledgeBank::Update() file: research/carls/knowledge_bank/leveldb_knowledge_bank.cc start line: 214 end line: 230 size: 16 LOC McCabe index: 2 number of parameters: 2 id: 276 unit: Status KnowledgeBankGrpcServiceImpl::StartSession() file: research/carls/knowledge_bank_grpc_service.cc start line: 38 end line: 53 size: 16 LOC McCabe index: 3 number of parameters: 3 id: 277 unit: absl::Status ReadTextProto() file: research/carls/base/proto_helper.cc start line: 126 end line: 142 size: 16 LOC McCabe index: 3 number of parameters: 2 id: 278 unit: explicit DynamicEmbeddingManagerResourceOp() file: research/carls/kernels/dynamic_embedding_manager_resource.cc start line: 72 end line: 88 size: 16 LOC McCabe index: 1 number of parameters: 1 id: 279 unit: def _max_neighbors() file: research/a2n/graph.py start line: 0 end line: 0 size: 16 LOC McCabe index: 4 number of parameters: 1 id: 280 unit: def store_paths() file: research/a2n/graph.py start line: 0 end line: 0 size: 16 LOC McCabe index: 12 number of parameters: 1 id: 281 unit: def embed() file: research/a2n/encoders.py start line: 0 end line: 0 size: 16 LOC McCabe index: 1 number of parameters: 2 id: 282 unit: def _get_neighbors() file: research/gam/gam/trainer/trainer_agreement.py start line: 0 end line: 0 size: 16 LOC McCabe index: 4 number of parameters: 2 id: 283 unit: def __init__() file: research/gam/gam/models/cnn.py start line: 0 end line: 0 size: 16 LOC McCabe index: 1 number of parameters: 5 id: 284 unit: def _construct_encoding() file: research/gam/gam/models/gcn.py start line: 0 end line: 0 size: 16 LOC McCabe index: 1 number of parameters: 5 id: 285 unit: def __init__() file: research/gam/gam/models/mlp.py start line: 0 end line: 0 size: 16 LOC McCabe index: 1 number of parameters: 6 id: 286 unit: def get_encoding_and_params() file: research/gam/gam/models/mlp.py start line: 0 end line: 0 size: 16 LOC McCabe index: 4 number of parameters: 3 id: 287 unit: def _aggregate() file: research/gam/gam/models/models_base.py start line: 0 end line: 0 size: 16 LOC McCabe index: 6 number of parameters: 2 id: 288 unit: def hyp_distance() file: research/kg_hyp_emb/utils/hyperbolic.py start line: 0 end line: 0 size: 16 LOC McCabe index: 2 number of parameters: 4 id: 289 unit: def call() file: research/gnn-survey/layers.py start line: 0 end line: 0 size: 16 LOC McCabe index: 1 number of parameters: 2 id: 290 unit: def __init__() file: research/gnn-survey/models.py start line: 0 end line: 0 size: 16 LOC McCabe index: 1 number of parameters: 7 id: 291 unit: def graph_call() file: neural_structured_learning/experimental/gnn.py start line: 0 end line: 0 size: 15 LOC McCabe index: 1 number of parameters: 3 id: 292 unit: def _replicate_index() file: neural_structured_learning/lib/utils.py start line: 0 end line: 0 size: 15 LOC McCabe index: 2 number of parameters: 2 id: 293 unit: def __init__() file: neural_structured_learning/keras/adversarial_regularization.py start line: 0 end line: 0 size: 15 LOC McCabe index: 4 number of parameters: 4 id: 294 unit: def _prepare_loss_fns() file: neural_structured_learning/keras/adversarial_regularization.py start line: 0 end line: 0 size: 15 LOC McCabe index: 18 number of parameters: 2 id: 295 unit: def _build_labeled_losses() file: neural_structured_learning/keras/adversarial_regularization.py start line: 0 end line: 0 size: 15 LOC McCabe index: 4 number of parameters: 2 id: 296 unit: static std::unique_ptr Make() file: research/carls/base/proto_factory.h start line: 82 end line: 96 size: 15 LOC McCabe index: 3 number of parameters: 2 id: 297 unit: std::string GetExtensionType() file: research/carls/base/proto_helper.cc start line: 30 end line: 44 size: 15 LOC McCabe index: 4 number of parameters: 2 id: 298 unit: bool ComputeCosineSimilarity() file: research/carls/base/embedding_helper.cc start line: 59 end line: 73 size: 15 LOC McCabe index: 5 number of parameters: 3 id: 299 unit: def read_entity_name_mapping() file: research/a2n/utils.py start line: 0 end line: 0 size: 15 LOC McCabe index: 4 number of parameters: 1 id: 300 unit: def get_edges() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 15 LOC McCabe index: 7 number of parameters: 4 id: 301 unit: def _call() file: research/gam/gam/models/gcn.py start line: 0 end line: 0 size: 15 LOC McCabe index: 4 number of parameters: 2 id: 302 unit: def get_queries() file: research/kg_hyp_emb/models/euclidean.py start line: 0 end line: 0 size: 15 LOC McCabe index: 1 number of parameters: 2 id: 303 unit: def call() file: neural_structured_learning/experimental/gnn.py start line: 0 end line: 0 size: 14 LOC McCabe index: 1 number of parameters: 3 id: 304 unit: def _main() file: neural_structured_learning/tools/pack_nbrs.py start line: 0 end line: 0 size: 14 LOC McCabe index: 2 number of parameters: 1 id: 305 unit: def __init__() file: neural_structured_learning/keras/layers/neighbor_features.py start line: 0 end line: 0 size: 14 LOC McCabe index: 4 number of parameters: 5 id: 306 unit: def _build_labeled_metrics() file: neural_structured_learning/keras/adversarial_regularization.py start line: 0 end line: 0 size: 14 LOC McCabe index: 5 number of parameters: 3 id: 307 unit: def add_to_collection() file: research/carls/context.py start line: 0 end line: 0 size: 14 LOC McCabe index: 5 number of parameters: 2 id: 308 unit: def top_k() file: research/carls/candidate_sampling_ops.py start line: 0 end line: 0 size: 14 LOC McCabe index: 3 number of parameters: 6 id: 309 unit: absl::Status InProtoKnowledgeBank::Update() file: research/carls/knowledge_bank/in_proto_knowledge_bank.cc start line: 129 end line: 142 size: 14 LOC McCabe index: 2 number of parameters: 2 id: 310 unit: std::vector KnowledgeBank::BatchUpdate() file: research/carls/knowledge_bank/knowledge_bank.cc start line: 83 end line: 96 size: 14 LOC McCabe index: 3 number of parameters: 2 id: 311 unit: absl::Status KnowledgeBank::Import() file: research/carls/knowledge_bank/knowledge_bank.cc start line: 133 end line: 146 size: 14 LOC McCabe index: 4 number of parameters: 1 id: 312 unit: static absl::Status MakeError() file: research/carls/base/status_helper.cc start line: 110 end line: 123 size: 14 LOC McCabe index: 3 number of parameters: 7 id: 313 unit: def get_graph_nbrhd_text() file: research/a2n/dataset.py start line: 0 end line: 0 size: 14 LOC McCabe index: 10 number of parameters: 3 id: 314 unit: def attend() file: research/a2n/encoders.py start line: 0 end line: 0 size: 14 LOC McCabe index: 2 number of parameters: 6 id: 315 unit: def mrr() file: research/a2n/metrics.py start line: 0 end line: 0 size: 14 LOC McCabe index: 1 number of parameters: 3 id: 316 unit: def sparse_to_tuple() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 14 LOC McCabe index: 4 number of parameters: 1 id: 317 unit: def get_loss_vat() file: research/gam/gam/trainer/adversarial_dense.py start line: 0 end line: 0 size: 14 LOC McCabe index: 1 number of parameters: 5 id: 318 unit: def _construct_feed_dict() file: research/gam/gam/trainer/trainer_agreement.py start line: 0 end line: 0 size: 14 LOC McCabe index: 2 number of parameters: 3 id: 319 unit: def build_attack_fn() file: research/multi_representation_adversary/multi_representation_adversary/helper.py start line: 0 end line: 0 size: 14 LOC McCabe index: 1 number of parameters: 4 id: 320 unit: def build_train_step_fn() file: research/multi_representation_adversary/multi_representation_adversary/helper.py start line: 0 end line: 0 size: 14 LOC McCabe index: 2 number of parameters: 5 id: 321 unit: def __init__() file: research/kg_hyp_emb/datasets/datasets.py start line: 0 end line: 0 size: 14 LOC McCabe index: 2 number of parameters: 3 id: 322 unit: def __init__() file: research/kg_hyp_emb/models/hyperbolic.py start line: 0 end line: 0 size: 14 LOC McCabe index: 1 number of parameters: 3 id: 323 unit: def _select_distance_fn() file: neural_structured_learning/lib/distances.py start line: 0 end line: 0 size: 13 LOC McCabe index: 6 number of parameters: 1 id: 324 unit: def replicate_embeddings() file: neural_structured_learning/lib/utils.py start line: 0 end line: 0 size: 13 LOC McCabe index: 2 number of parameters: 2 id: 325 unit: def add_undirected_edges() file: neural_structured_learning/tools/graph_utils.py start line: 0 end line: 0 size: 13 LOC McCabe index: 2 number of parameters: 1 id: 326 unit: def read_tsv_graph() file: neural_structured_learning/tools/graph_utils.py start line: 0 end line: 0 size: 13 LOC McCabe index: 3 number of parameters: 1 id: 327 unit: def __call__() file: neural_structured_learning/keras/layers/pairwise_distance.py start line: 0 end line: 0 size: 13 LOC McCabe index: 8 number of parameters: 5 id: 328 unit: def __init__() file: neural_structured_learning/keras/adversarial_regularization.py start line: 0 end line: 0 size: 13 LOC McCabe index: 2 number of parameters: 3 id: 329 unit: def _make_metric_name() file: neural_structured_learning/keras/adversarial_regularization.py start line: 0 end line: 0 size: 13 LOC McCabe index: 4 number of parameters: 3 id: 330 unit: def initialize_states() file: research/neural_clustering/models/ncp_base.py start line: 0 end line: 0 size: 13 LOC McCabe index: 1 number of parameters: 2 id: 331 unit: def dynamic_embedding_update() file: research/carls/dynamic_embedding_ops.py start line: 0 end line: 0 size: 13 LOC McCabe index: 2 number of parameters: 6 id: 332 unit: def negative_sampler() file: research/carls/candidate_sampling/candidate_sampler_config_builder.py start line: 0 end line: 0 size: 13 LOC McCabe index: 4 number of parameters: 2 id: 333 unit: absl::Status CandidateSampler::Sample() file: research/carls/candidate_sampling/candidate_sampler.cc start line: 28 end line: 40 size: 13 LOC McCabe index: 3 number of parameters: 4 id: 334 unit: absl::Status GaussianMemory::BatchLookupInternal() file: research/carls/memory_store/gaussian_memory.cc start line: 174 end line: 187 size: 13 LOC McCabe index: 2 number of parameters: 2 id: 335 unit: GaussianCluster GaussianMemory::ConvertToGaussianCluster() file: research/carls/memory_store/gaussian_memory.cc start line: 369 end line: 381 size: 13 LOC McCabe index: 2 number of parameters: 1 id: 336 unit: absl::Status InProtoKnowledgeBank::Lookup() file: research/carls/knowledge_bank/in_proto_knowledge_bank.cc start line: 94 end line: 106 size: 13 LOC McCabe index: 2 number of parameters: 2 id: 337 unit: absl::Status InProtoKnowledgeBank::ImportInternal() file: research/carls/knowledge_bank/in_proto_knowledge_bank.cc start line: 152 end line: 165 size: 13 LOC McCabe index: 3 number of parameters: 1 id: 338 unit: absl::Status BuildInputFeatureWithDebugInfo() file: research/carls/base/input_context_helper.cc start line: 211 end line: 223 size: 13 LOC McCabe index: 2 number of parameters: 3 id: 339 unit: absl::Status BuildInputFeatureWithDebugInfo() file: research/carls/base/input_context_helper.cc start line: 227 end line: 239 size: 13 LOC McCabe index: 2 number of parameters: 3 id: 340 unit: absl::Status BuildInputFeatureWithDebugInfo() file: research/carls/base/input_context_helper.cc start line: 243 end line: 255 size: 13 LOC McCabe index: 2 number of parameters: 3 id: 341 unit: absl::Status BuildInputFeatureWithDebugInfo() file: research/carls/base/input_context_helper.cc start line: 259 end line: 271 size: 13 LOC McCabe index: 2 number of parameters: 3 id: 342 unit: absl::Status BuildInputFeatureWithDebugInfo() file: research/carls/base/input_context_helper.cc start line: 275 end line: 287 size: 13 LOC McCabe index: 2 number of parameters: 3 id: 343 unit: absl::Status ReadFileString() file: research/carls/base/file_helper.cc start line: 61 end line: 74 size: 13 LOC McCabe index: 2 number of parameters: 2 id: 344 unit: def dynamic_normalization() file: research/carls/dynamic_normalization.py start line: 0 end line: 0 size: 13 LOC McCabe index: 1 number of parameters: 8 id: 345 unit: def _eval_validation() file: research/gam/gam/trainer/trainer_agreement.py start line: 0 end line: 0 size: 13 LOC McCabe index: 3 number of parameters: 4 id: 346 unit: def predict() file: research/gam/gam/trainer/trainer_classification_gcn.py start line: 0 end line: 0 size: 13 LOC McCabe index: 2 number of parameters: 4 id: 347 unit: def load_data() file: research/gam/gam/experiments/run_train_gam.py start line: 0 end line: 0 size: 13 LOC McCabe index: 4 number of parameters: 0 id: 348 unit: def get_predictions_and_params() file: research/gam/gam/models/wide_resnet.py start line: 0 end line: 0 size: 13 LOC McCabe index: 4 number of parameters: 4 id: 349 unit: def get_filters() file: research/kg_hyp_emb/datasets/process.py start line: 0 end line: 0 size: 13 LOC McCabe index: 4 number of parameters: 2 id: 350 unit: def train_step() file: research/kg_hyp_emb/learning/trainer.py start line: 0 end line: 0 size: 13 LOC McCabe index: 2 number of parameters: 3 id: 351 unit: def build() file: research/gnn-survey/layers.py start line: 0 end line: 0 size: 13 LOC McCabe index: 2 number of parameters: 2 id: 352 unit: def main() file: neural_structured_learning/tools/build_docs.py start line: 0 end line: 0 size: 12 LOC McCabe index: 2 number of parameters: 1 id: 353 unit: def __call__() file: neural_structured_learning/keras/layers/neighbor_features.py start line: 0 end line: 0 size: 12 LOC McCabe index: 4 number of parameters: 4 id: 354 unit: def _call_base_model() file: neural_structured_learning/keras/adversarial_regularization.py start line: 0 end line: 0 size: 12 LOC McCabe index: 13 number of parameters: 3 id: 355 unit: def _forward_pass() file: neural_structured_learning/keras/adversarial_regularization.py start line: 0 end line: 0 size: 12 LOC McCabe index: 3 number of parameters: 5 id: 356 unit: def __init__() file: research/carls/dynamic_embedding_ops.py start line: 0 end line: 0 size: 12 LOC McCabe index: 2 number of parameters: 5 id: 357 unit: int GaussianMemory::AddNewCluster() file: research/carls/memory_store/gaussian_memory.cc start line: 317 end line: 328 size: 12 LOC McCabe index: 1 number of parameters: 1 id: 358 unit: absl::Status LeveldbKnowledgeBank::Lookup() file: research/carls/knowledge_bank/leveldb_knowledge_bank.cc start line: 176 end line: 187 size: 12 LOC McCabe index: 2 number of parameters: 2 id: 359 unit: static FactoryType GetFactoryByName() file: research/carls/base/proto_factory.h start line: 118 end line: 130 size: 12 LOC McCabe index: 2 number of parameters: 1 id: 360 unit: void ThreadBundle::Add() file: research/carls/base/thread_bundle.cc start line: 56 end line: 67 size: 12 LOC McCabe index: 2 number of parameters: 1 id: 361 unit: void Compute() file: research/carls/kernels/io_ops.cc start line: 126 end line: 139 size: 12 LOC McCabe index: 1 number of parameters: 1 id: 362 unit: def get_graph_nbrhd() file: research/a2n/dataset.py start line: 0 end line: 0 size: 12 LOC McCabe index: 10 number of parameters: 3 id: 363 unit: def lookup() file: research/a2n/encoders.py start line: 0 end line: 0 size: 12 LOC McCabe index: 2 number of parameters: 2 id: 364 unit: def hits_at_k() file: research/a2n/metrics.py start line: 0 end line: 0 size: 12 LOC McCabe index: 1 number of parameters: 4 id: 365 unit: def predict() file: research/gam/gam/trainer/trainer_agreement.py start line: 0 end line: 0 size: 12 LOC McCabe index: 3 number of parameters: 5 id: 366 unit: def dct() file: research/multi_representation_adversary/multi_representation_adversary/transforms.py start line: 0 end line: 0 size: 12 LOC McCabe index: 6 number of parameters: 1 id: 367 unit: def idct() file: research/multi_representation_adversary/multi_representation_adversary/transforms.py start line: 0 end line: 0 size: 12 LOC McCabe index: 6 number of parameters: 1 id: 368 unit: def attack() file: research/multi_representation_adversary/multi_representation_adversary/attacks.py start line: 0 end line: 0 size: 12 LOC McCabe index: 3 number of parameters: 6 id: 369 unit: def l1_config() file: research/multi_representation_adversary/multi_representation_adversary/attacks.py start line: 0 end line: 0 size: 12 LOC McCabe index: 1 number of parameters: 5 id: 370 unit: def main() file: research/multi_representation_adversary/multi_representation_adversary/main.py start line: 0 end line: 0 size: 12 LOC McCabe index: 3 number of parameters: 1 id: 371 unit: def get_idx() file: research/kg_hyp_emb/datasets/process.py start line: 0 end line: 0 size: 12 LOC McCabe index: 5 number of parameters: 1 id: 372 unit: def similarity_score() file: research/kg_hyp_emb/models/euclidean.py start line: 0 end line: 0 size: 12 LOC McCabe index: 4 number of parameters: 4 id: 373 unit: def build() file: research/gnn-survey/layers.py start line: 0 end line: 0 size: 12 LOC McCabe index: 1 number of parameters: 2 id: 374 unit: def _apply_perturbations() file: neural_structured_learning/lib/adversarial_neighbor.py start line: 0 end line: 0 size: 11 LOC McCabe index: 3 number of parameters: 3 id: 375 unit: def decay_over_time() file: neural_structured_learning/lib/utils.py start line: 0 end line: 0 size: 11 LOC McCabe index: 1 number of parameters: 3 id: 376 unit: def resolve_metric() file: neural_structured_learning/keras/adversarial_regularization.py start line: 0 end line: 0 size: 11 LOC McCabe index: 10 number of parameters: 2 id: 377 unit: def brute_force_topk_sampler() file: research/carls/candidate_sampling/candidate_sampler_config_builder.py start line: 0 end line: 0 size: 11 LOC McCabe index: 4 number of parameters: 1 id: 378 unit: bool IsFurther() file: research/carls/memory_store/distance_helper.cc start line: 45 end line: 55 size: 11 LOC McCabe index: 3 number of parameters: 3 id: 379 unit: def _sampled_logits_lookup_grad() file: research/carls/candidate_sampling_ops.py start line: 0 end line: 0 size: 11 LOC McCabe index: 2 number of parameters: 6 id: 380 unit: absl::Status CheckInputInputFeature() file: research/carls/base/input_context_helper.cc start line: 35 end line: 45 size: 11 LOC McCabe index: 1 number of parameters: 4 id: 381 unit: absl::Status WriteBinaryProto() file: research/carls/base/proto_helper.cc start line: 68 end line: 78 size: 11 LOC McCabe index: 2 number of parameters: 3 id: 382 unit: EmbeddingVectorProto ToEmbeddingVectorProto() file: research/carls/base/embedding_helper.cc start line: 29 end line: 39 size: 11 LOC McCabe index: 2 number of parameters: 1 id: 383 unit: bool ComputeDotProduct() file: research/carls/base/embedding_helper.cc start line: 99 end line: 109 size: 11 LOC McCabe index: 4 number of parameters: 3 id: 384 unit: absl::Status DynamicEmbeddingManager::Import() file: research/carls/dynamic_embedding_manager.cc start line: 505 end line: 515 size: 11 LOC McCabe index: 1 number of parameters: 1 id: 385 unit: def _proc_paths() file: research/a2n/dataset.py start line: 0 end line: 0 size: 11 LOC McCabe index: 5 number of parameters: 6 id: 386 unit: def add_variable_summaries() file: research/a2n/utils.py start line: 0 end line: 0 size: 11 LOC McCabe index: 1 number of parameters: 2 id: 387 unit: def variable_summaries() file: research/gam/gam/trainer/trainer_base.py start line: 0 end line: 0 size: 11 LOC McCabe index: 1 number of parameters: 1 id: 388 unit: def _evaluate() file: research/gam/gam/trainer/trainer_classification_gcn.py start line: 0 end line: 0 size: 11 LOC McCabe index: 2 number of parameters: 5 id: 389 unit: def process_dataset() file: research/kg_hyp_emb/datasets/process.py start line: 0 end line: 0 size: 11 LOC McCabe index: 3 number of parameters: 1 id: 390 unit: def get_factors() file: research/kg_hyp_emb/models/complex.py start line: 0 end line: 0 size: 11 LOC McCabe index: 1 number of parameters: 2 id: 391 unit: def call() file: research/kg_hyp_emb/models/base.py start line: 0 end line: 0 size: 11 LOC McCabe index: 2 number of parameters: 3 id: 392 unit: def score() file: research/kg_hyp_emb/models/base.py start line: 0 end line: 0 size: 11 LOC McCabe index: 4 number of parameters: 6 id: 393 unit: def call() file: research/gnn-survey/layers.py start line: 0 end line: 0 size: 11 LOC McCabe index: 3 number of parameters: 2 id: 394 unit: def _assert_multinomial_distribution() file: neural_structured_learning/lib/distances.py start line: 0 end line: 0 size: 10 LOC McCabe index: 1 number of parameters: 2 id: 395 unit: def call() file: neural_structured_learning/keras/layers/pairwise_distance.py start line: 0 end line: 0 size: 10 LOC McCabe index: 2 number of parameters: 3 id: 396 unit: def get_config() file: neural_structured_learning/keras/layers/pairwise_distance.py start line: 0 end line: 0 size: 10 LOC McCabe index: 3 number of parameters: 1 id: 397 unit: def __init__() file: neural_structured_learning/keras/graph_regularization.py start line: 0 end line: 0 size: 10 LOC McCabe index: 2 number of parameters: 3 id: 398 unit: def generate_batch() file: research/neural_clustering/data_generators/mog.py start line: 0 end line: 0 size: 10 LOC McCabe index: 2 number of parameters: 4 id: 399 unit: def remap_label_ids() file: research/neural_clustering/utils/data_utils.py start line: 0 end line: 0 size: 10 LOC McCabe index: 3 number of parameters: 1 id: 400 unit: def build_candidate_sampler_config() file: research/carls/candidate_sampling/candidate_sampler_config_builder.py start line: 0 end line: 0 size: 10 LOC McCabe index: 3 number of parameters: 1 id: 401 unit: def _get_neighbor_logits() file: research/carls/graph_regularization.py start line: 0 end line: 0 size: 10 LOC McCabe index: 3 number of parameters: 4 id: 402 unit: float DistanceUpperBound() file: research/carls/memory_store/distance_helper.cc start line: 23 end line: 32 size: 10 LOC McCabe index: 3 number of parameters: 1 id: 403 unit: float DistanceLowerBound() file: research/carls/memory_store/distance_helper.cc start line: 34 end line: 43 size: 10 LOC McCabe index: 3 number of parameters: 1 id: 404 unit: bool FindFeatureWeightsByName() file: research/carls/base/input_context_helper.cc start line: 482 end line: 491 size: 10 LOC McCabe index: 2 number of parameters: 3 id: 405 unit: void TopN::ExtractNondestructive() file: research/carls/base/top_n.h start line: 305 end line: 314 size: 10 LOC McCabe index: 2 number of parameters: 1 id: 406 unit: std::pair SplitPath() file: research/carls/base/file_helper.cc start line: 118 end line: 132 size: 10 LOC McCabe index: 3 number of parameters: 1 id: 407 unit: std::vector get_begin_iterators() file: research/carls/base/async_node_hash_map.h start line: 351 end line: 360 size: 10 LOC McCabe index: 2 number of parameters: 0 id: 408 unit: std::vector get_end_iterators() file: research/carls/base/async_node_hash_map.h start line: 362 end line: 371 size: 10 LOC McCabe index: 2 number of parameters: 0 id: 409 unit: bool FindFeatureValuesByName() file: research/carls/base/input_context_helper.h start line: 66 end line: 75 size: 10 LOC McCabe index: 2 number of parameters: 3 id: 410 unit: def _add_offset() file: research/carls/dynamic_normalization.py start line: 0 end line: 0 size: 10 LOC McCabe index: 1 number of parameters: 3 id: 411 unit: def _add_scale() file: research/carls/dynamic_normalization.py start line: 0 end line: 0 size: 10 LOC McCabe index: 1 number of parameters: 3 id: 412 unit: def get_attention_probs() file: research/a2n/encoders.py start line: 0 end line: 0 size: 10 LOC McCabe index: 1 number of parameters: 5 id: 413 unit: def _lookup() file: research/a2n/encoders.py start line: 0 end line: 0 size: 10 LOC McCabe index: 1 number of parameters: 3 id: 414 unit: def save_state_to_file() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 10 LOC McCabe index: 1 number of parameters: 2 id: 415 unit: def split_train_val() file: research/gam/gam/data/preprocessing.py start line: 0 end line: 0 size: 10 LOC McCabe index: 3 number of parameters: 4 id: 416 unit: def get_encoding_and_params() file: research/gam/gam/models/gcn.py start line: 0 end line: 0 size: 10 LOC McCabe index: 3 number of parameters: 6 id: 417 unit: def to_np_array() file: research/kg_hyp_emb/datasets/process.py start line: 0 end line: 0 size: 10 LOC McCabe index: 3 number of parameters: 3 id: 418 unit: def get_queries() file: research/kg_hyp_emb/models/complex.py start line: 0 end line: 0 size: 10 LOC McCabe index: 1 number of parameters: 2 id: 419 unit: def get_scores_targets() file: research/kg_hyp_emb/models/base.py start line: 0 end line: 0 size: 10 LOC McCabe index: 1 number of parameters: 2 id: 420 unit: def call() file: research/gnn-survey/layers.py start line: 0 end line: 0 size: 10 LOC McCabe index: 3 number of parameters: 2 id: 421 unit: def __init__() file: research/gnn-survey/models.py start line: 0 end line: 0 size: 10 LOC McCabe index: 1 number of parameters: 6 id: 422 unit: def _select_decay_fn() file: neural_structured_learning/lib/utils.py start line: 0 end line: 0 size: 9 LOC McCabe index: 4 number of parameters: 1 id: 423 unit: def virtual_adv_regularizer() file: neural_structured_learning/lib/regularizer.py start line: 0 end line: 0 size: 9 LOC McCabe index: 2 number of parameters: 4 id: 424 unit: def __init__() file: neural_structured_learning/tools/build_graph.py start line: 0 end line: 0 size: 9 LOC McCabe index: 9 number of parameters: 2 id: 425 unit: def _generate_lsh_buckets() file: neural_structured_learning/tools/build_graph.py start line: 0 end line: 0 size: 9 LOC McCabe index: 3 number of parameters: 2 id: 426 unit: def add_edge() file: neural_structured_learning/tools/graph_utils.py start line: 0 end line: 0 size: 9 LOC McCabe index: 4 number of parameters: 2 id: 427 unit: def write_tsv_graph() file: neural_structured_learning/tools/graph_utils.py start line: 0 end line: 0 size: 9 LOC McCabe index: 3 number of parameters: 2 id: 428 unit: def __call__() file: neural_structured_learning/keras/adversarial_regularization.py start line: 0 end line: 0 size: 9 LOC McCabe index: 3 number of parameters: 3 id: 429 unit: def __init__() file: research/carls/dynamic_embedding_neighbor_cache.py start line: 0 end line: 0 size: 9 LOC McCabe index: 1 number of parameters: 5 id: 430 unit: def _dynamic_gaussian_memory_lookup_grad() file: research/carls/dynamic_memory_ops.py start line: 0 end line: 0 size: 9 LOC McCabe index: 5 number of parameters: 5 id: 431 unit: EmbeddingVectorProto InitTensor() file: research/carls/gradient_descent/gradient_descent_optimizer.cc start line: 24 end line: 32 size: 9 LOC McCabe index: 2 number of parameters: 2 id: 432 unit: EmbeddingVectorProto GradientDescentOptimizer::ApplyGradientDescent() file: research/carls/gradient_descent/gradient_descent_optimizer.cc start line: 115 end line: 123 size: 9 LOC McCabe index: 2 number of parameters: 2 id: 433 unit: void ThreadBundle::Init() file: research/carls/base/thread_bundle.cc start line: 46 end line: 54 size: 9 LOC McCabe index: 1 number of parameters: 0 id: 434 unit: tensorflow::Tensor ToTensorFlowTensor() file: research/carls/base/embedding_helper.cc start line: 48 end line: 56 size: 9 LOC McCabe index: 2 number of parameters: 1 id: 435 unit: bool empty() file: research/carls/base/async_node_hash_map.h start line: 188 end line: 196 size: 9 LOC McCabe index: 3 number of parameters: 0 id: 436 unit: absl::Status FindFeatureValuesAndWeightsByName() file: research/carls/base/input_context_helper.h start line: 99 end line: 107 size: 9 LOC McCabe index: 2 number of parameters: 3 id: 437 unit: Status CreateResource() file: research/carls/kernels/dynamic_embedding_manager_resource.cc start line: 91 end line: 99 size: 9 LOC McCabe index: 2 number of parameters: 1 id: 438 unit: def get_graph_nbrhd_with_rels() file: research/a2n/dataset.py start line: 0 end line: 0 size: 9 LOC McCabe index: 13 number of parameters: 3 id: 439 unit: def _tuple_iterator() file: research/a2n/dataset.py start line: 0 end line: 0 size: 9 LOC McCabe index: 5 number of parameters: 1 id: 440 unit: def __init__() file: research/a2n/encoders.py start line: 0 end line: 0 size: 9 LOC McCabe index: 1 number of parameters: 4 id: 441 unit: def generate_graph() file: research/a2n/generate_random_graph.py start line: 0 end line: 0 size: 9 LOC McCabe index: 3 number of parameters: 0 id: 442 unit: def __init__() file: research/gam/gam/trainer/trainer_base.py start line: 0 end line: 0 size: 9 LOC McCabe index: 1 number of parameters: 5 id: 443 unit: def __init__() file: research/gam/gam/trainer/trainer_agreement.py start line: 0 end line: 0 size: 9 LOC McCabe index: 1 number of parameters: 2 id: 444 unit: def sparse_dropout() file: research/gam/gam/models/gcn.py start line: 0 end line: 0 size: 9 LOC McCabe index: 1 number of parameters: 3 id: 445 unit: def linf_config() file: research/multi_representation_adversary/multi_representation_adversary/attacks.py start line: 0 end line: 0 size: 9 LOC McCabe index: 1 number of parameters: 2 id: 446 unit: def l2_config() file: research/multi_representation_adversary/multi_representation_adversary/attacks.py start line: 0 end line: 0 size: 9 LOC McCabe index: 1 number of parameters: 2 id: 447 unit: def __init__() file: research/multi_representation_adversary/multi_representation_adversary/selectors.py start line: 0 end line: 0 size: 9 LOC McCabe index: 1 number of parameters: 4 id: 448 unit: def update() file: research/multi_representation_adversary/multi_representation_adversary/selectors.py start line: 0 end line: 0 size: 9 LOC McCabe index: 3 number of parameters: 3 id: 449 unit: def _update() file: research/multi_representation_adversary/multi_representation_adversary/selectors.py start line: 0 end line: 0 size: 9 LOC McCabe index: 2 number of parameters: 3 id: 450 unit: def build_eval_step_fn() file: research/multi_representation_adversary/multi_representation_adversary/helper.py start line: 0 end line: 0 size: 9 LOC McCabe index: 2 number of parameters: 3 id: 451 unit: def euc_sq_distance() file: research/kg_hyp_emb/utils/euclidean.py start line: 0 end line: 0 size: 9 LOC McCabe index: 2 number of parameters: 3 id: 452 unit: def givens_reflection() file: research/kg_hyp_emb/utils/euclidean.py start line: 0 end line: 0 size: 9 LOC McCabe index: 1 number of parameters: 2 id: 453 unit: def __init__() file: research/kg_hyp_emb/models/euclidean.py start line: 0 end line: 0 size: 9 LOC McCabe index: 1 number of parameters: 3 id: 454 unit: def __init__() file: research/kg_hyp_emb/models/euclidean.py start line: 0 end line: 0 size: 9 LOC McCabe index: 1 number of parameters: 3 id: 455 unit: def __init__() file: research/kg_hyp_emb/models/euclidean.py start line: 0 end line: 0 size: 9 LOC McCabe index: 1 number of parameters: 3 id: 456 unit: def get_queries() file: research/kg_hyp_emb/models/hyperbolic.py start line: 0 end line: 0 size: 9 LOC McCabe index: 1 number of parameters: 2 id: 457 unit: def similarity_score() file: research/kg_hyp_emb/models/complex.py start line: 0 end line: 0 size: 9 LOC McCabe index: 2 number of parameters: 4 id: 458 unit: def _split_dict() file: neural_structured_learning/lib/adversarial_neighbor.py start line: 0 end line: 0 size: 8 LOC McCabe index: 3 number of parameters: 3 id: 459 unit: def apply_feature_mask() file: neural_structured_learning/lib/utils.py start line: 0 end line: 0 size: 8 LOC McCabe index: 2 number of parameters: 2 id: 460 unit: def _replicate_sources() file: neural_structured_learning/keras/layers/pairwise_distance.py start line: 0 end line: 0 size: 8 LOC McCabe index: 6 number of parameters: 3 id: 461 unit: def _extract_labels_and_weights() file: neural_structured_learning/keras/adversarial_regularization.py start line: 0 end line: 0 size: 8 LOC McCabe index: 3 number of parameters: 2 id: 462 unit: def build() file: research/carls/dynamic_embedding_ops.py start line: 0 end line: 0 size: 8 LOC McCabe index: 2 number of parameters: 2 id: 463 unit: def lookup() file: research/carls/dynamic_embedding_neighbor_cache.py start line: 0 end line: 0 size: 8 LOC McCabe index: 1 number of parameters: 2 id: 464 unit: void ClearInternalData() file: research/carls/knowledge_bank/leveldb_knowledge_bank.cc start line: 104 end line: 113 size: 8 LOC McCabe index: 1 number of parameters: 0 id: 465 unit: std::vector GetAllFeatureNames() file: research/carls/base/input_context_helper.cc start line: 732 end line: 739 size: 8 LOC McCabe index: 2 number of parameters: 1 id: 466 unit: size_t size() file: research/carls/base/async_node_hash_map.h start line: 199 end line: 206 size: 8 LOC McCabe index: 2 number of parameters: 0 id: 467 unit: std::string TimestampedDirname() file: research/carls/kernels/io_ops.cc start line: 41 end line: 48 size: 8 LOC McCabe index: 1 number of parameters: 0 id: 468 unit: def restore_knowledge_bank() file: research/carls/io_ops.py start line: 0 end line: 0 size: 8 LOC McCabe index: 1 number of parameters: 5 id: 469 unit: def _compute_label_correctness() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 8 LOC McCabe index: 2 number of parameters: 2 id: 470 unit: def get_edges() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 8 LOC McCabe index: 1 number of parameters: 4 id: 471 unit: def _create_counter() file: research/gam/gam/trainer/trainer_cotrain.py start line: 0 end line: 0 size: 8 LOC McCabe index: 1 number of parameters: 1 id: 472 unit: def _create_counter() file: research/gam/gam/trainer/trainer_classification.py start line: 0 end line: 0 size: 8 LOC McCabe index: 1 number of parameters: 1 id: 473 unit: def _create_counter() file: research/gam/gam/trainer/trainer_agreement.py start line: 0 end line: 0 size: 8 LOC McCabe index: 1 number of parameters: 1 id: 474 unit: def create_agreement_prediction() file: research/gam/gam/trainer/trainer_agreement.py start line: 0 end line: 0 size: 8 LOC McCabe index: 1 number of parameters: 4 id: 475 unit: def _create_counter() file: research/gam/gam/trainer/trainer_classification_gcn.py start line: 0 end line: 0 size: 8 LOC McCabe index: 1 number of parameters: 1 id: 476 unit: def kl_divergence_with_logit() file: research/gam/gam/trainer/adversarial_sparse.py start line: 0 end line: 0 size: 8 LOC McCabe index: 1 number of parameters: 3 id: 477 unit: def fast_flip() file: research/gam/gam/models/wide_resnet.py start line: 0 end line: 0 size: 8 LOC McCabe index: 1 number of parameters: 2 id: 478 unit: def save_gin_config() file: research/multi_representation_adversary/multi_representation_adversary/main.py start line: 0 end line: 0 size: 8 LOC McCabe index: 3 number of parameters: 2 id: 479 unit: def __init__() file: research/kg_hyp_emb/learning/losses.py start line: 0 end line: 0 size: 8 LOC McCabe index: 1 number of parameters: 3 id: 480 unit: def calculate_loss() file: research/kg_hyp_emb/learning/losses.py start line: 0 end line: 0 size: 8 LOC McCabe index: 4 number of parameters: 3 id: 481 unit: def givens_rotations() file: research/kg_hyp_emb/utils/euclidean.py start line: 0 end line: 0 size: 8 LOC McCabe index: 1 number of parameters: 2 id: 482 unit: def __init__() file: research/kg_hyp_emb/models/hyperbolic.py start line: 0 end line: 0 size: 8 LOC McCabe index: 1 number of parameters: 3 id: 483 unit: def get_queries() file: research/kg_hyp_emb/models/complex.py start line: 0 end line: 0 size: 8 LOC McCabe index: 1 number of parameters: 2 id: 484 unit: def call() file: research/gnn-survey/models.py start line: 0 end line: 0 size: 8 LOC McCabe index: 2 number of parameters: 2 id: 485 unit: def call() file: research/gnn-survey/models.py start line: 0 end line: 0 size: 8 LOC McCabe index: 2 number of parameters: 2 id: 486 unit: def call() file: research/gnn-survey/models.py start line: 0 end line: 0 size: 8 LOC McCabe index: 2 number of parameters: 2 id: 487 unit: def __init__() file: neural_structured_learning/experimental/gnn.py start line: 0 end line: 0 size: 7 LOC McCabe index: 1 number of parameters: 4 id: 488 unit: def _compose_as_dict() file: neural_structured_learning/lib/adversarial_neighbor.py start line: 0 end line: 0 size: 7 LOC McCabe index: 4 number of parameters: 2 id: 489 unit: def _decompose_as() file: neural_structured_learning/lib/adversarial_neighbor.py start line: 0 end line: 0 size: 7 LOC McCabe index: 5 number of parameters: 3 id: 490 unit: def _bucket() file: neural_structured_learning/tools/build_graph.py start line: 0 end line: 0 size: 7 LOC McCabe index: 3 number of parameters: 3 id: 491 unit: def _clone_metrics() file: neural_structured_learning/keras/adversarial_regularization.py start line: 0 end line: 0 size: 7 LOC McCabe index: 5 number of parameters: 1 id: 492 unit: def _remove_labels_and_weights() file: neural_structured_learning/keras/adversarial_regularization.py start line: 0 end line: 0 size: 7 LOC McCabe index: 3 number of parameters: 2 id: 493 unit: def __init__() file: research/neural_clustering/data_generators/mog.py start line: 0 end line: 0 size: 7 LOC McCabe index: 1 number of parameters: 6 id: 494 unit: def __init__() file: research/neural_clustering/models/ncp_base.py start line: 0 end line: 0 size: 7 LOC McCabe index: 1 number of parameters: 5 id: 495 unit: def _dynamic_embedding_lookup_grad() file: research/carls/dynamic_embedding_ops.py start line: 0 end line: 0 size: 7 LOC McCabe index: 1 number of parameters: 2 id: 496 unit: def __init__() file: research/carls/graph_regularization.py start line: 0 end line: 0 size: 7 LOC McCabe index: 1 number of parameters: 4 id: 497 unit: def _infer_and_update() file: research/carls/graph_regularization.py start line: 0 end line: 0 size: 7 LOC McCabe index: 4 number of parameters: 4 id: 498 unit: absl::Status GaussianMemory::ExportInternal() file: research/carls/memory_store/gaussian_memory.cc start line: 244 end line: 250 size: 7 LOC McCabe index: 1 number of parameters: 2 id: 499 unit: absl::Status MemoryStore::BatchLookup() file: research/carls/memory_store/memory_store.cc start line: 29 end line: 35 size: 7 LOC McCabe index: 1 number of parameters: 2 id: 500 unit: absl::Status MemoryStore::BatchLookupWithUpdate() file: research/carls/memory_store/memory_store.cc start line: 37 end line: 43 size: 7 LOC McCabe index: 1 number of parameters: 2 id: 501 unit: absl::Status MemoryStore::BatchLookupWithGrow() file: research/carls/memory_store/memory_store.cc start line: 45 end line: 51 size: 7 LOC McCabe index: 1 number of parameters: 2 id: 502 unit: absl::Status InProtoKnowledgeBank::ExportInternal() file: research/carls/knowledge_bank/in_proto_knowledge_bank.cc start line: 144 end line: 150 size: 7 LOC McCabe index: 1 number of parameters: 2 id: 503 unit: InputFeature BuildInputFeature() file: research/carls/base/input_context_helper.cc start line: 56 end line: 62 size: 7 LOC McCabe index: 2 number of parameters: 1 id: 504 unit: InputFeature BuildInputFeature() file: research/carls/base/input_context_helper.cc start line: 66 end line: 72 size: 7 LOC McCabe index: 2 number of parameters: 1 id: 505 unit: InputFeature BuildInputFeature() file: research/carls/base/input_context_helper.cc start line: 76 end line: 82 size: 7 LOC McCabe index: 2 number of parameters: 1 id: 506 unit: InputFeature BuildInputFeature() file: research/carls/base/input_context_helper.cc start line: 86 end line: 92 size: 7 LOC McCabe index: 2 number of parameters: 1 id: 507 unit: InputFeature BuildInputFeature() file: research/carls/base/input_context_helper.cc start line: 96 end line: 102 size: 7 LOC McCabe index: 2 number of parameters: 1 id: 508 unit: bool FindFeatureValues() file: research/carls/base/input_context_helper.cc start line: 394 end line: 400 size: 7 LOC McCabe index: 2 number of parameters: 2 id: 509 unit: bool FindFeatureValues() file: research/carls/base/input_context_helper.cc start line: 403 end line: 409 size: 7 LOC McCabe index: 2 number of parameters: 2 id: 510 unit: bool FindFeatureValues() file: research/carls/base/input_context_helper.cc start line: 413 end line: 419 size: 7 LOC McCabe index: 2 number of parameters: 2 id: 511 unit: bool FindFeatureValues() file: research/carls/base/input_context_helper.cc start line: 423 end line: 429 size: 7 LOC McCabe index: 2 number of parameters: 2 id: 512 unit: bool FindFeatureValues() file: research/carls/base/input_context_helper.cc start line: 433 end line: 439 size: 7 LOC McCabe index: 2 number of parameters: 2 id: 513 unit: bool FindFeatureValues() file: research/carls/base/input_context_helper.cc start line: 443 end line: 449 size: 7 LOC McCabe index: 2 number of parameters: 2 id: 514 unit: void AddFeatureOrDie() file: research/carls/base/input_context_helper.cc start line: 493 end line: 499 size: 7 LOC McCabe index: 1 number of parameters: 3 id: 515 unit: bool ThreadBundle::JoinAllWithDeadline() file: research/carls/base/thread_bundle.cc start line: 71 end line: 77 size: 7 LOC McCabe index: 3 number of parameters: 1 id: 516 unit: void TopN::ExtractUnsortedNondestructive() file: research/carls/base/top_n.h start line: 324 end line: 331 size: 7 LOC McCabe index: 2 number of parameters: 1 id: 517 unit: void clear() file: research/carls/base/async_node_hash_map.h start line: 209 end line: 215 size: 7 LOC McCabe index: 2 number of parameters: 0 id: 518 unit: absl::Duration ms_to_duration() file: research/carls/kernels/dynamic_embedding_manager_resource.cc start line: 28 end line: 34 size: 7 LOC McCabe index: 2 number of parameters: 1 id: 519 unit: def embed() file: research/a2n/encoders.py start line: 0 end line: 0 size: 7 LOC McCabe index: 1 number of parameters: 3 id: 520 unit: def label_samples() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 7 LOC McCabe index: 5 number of parameters: 3 id: 521 unit: def preprocess_features() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 7 LOC McCabe index: 1 number of parameters: 1 id: 522 unit: def preprocess_features() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 7 LOC McCabe index: 1 number of parameters: 1 id: 523 unit: def normalize_adj() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 7 LOC McCabe index: 1 number of parameters: 1 id: 524 unit: def row_normalize() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 7 LOC McCabe index: 1 number of parameters: 1 id: 525 unit: def compute_percent_correct() file: research/gam/gam/data/robustness.py start line: 0 end line: 0 size: 7 LOC McCabe index: 3 number of parameters: 1 id: 526 unit: def _save_state() file: research/gam/gam/trainer/trainer_cotrain.py start line: 0 end line: 0 size: 7 LOC McCabe index: 3 number of parameters: 5 id: 527 unit: def _select_val_samples() file: research/gam/gam/trainer/trainer_agreement.py start line: 0 end line: 0 size: 7 LOC McCabe index: 1 number of parameters: 3 id: 528 unit: def predict() file: research/gam/gam/trainer/trainer_agreement.py start line: 0 end line: 0 size: 7 LOC McCabe index: 2 number of parameters: 6 id: 529 unit: def get_layer_uid() file: research/gam/gam/models/gcn.py start line: 0 end line: 0 size: 7 LOC McCabe index: 2 number of parameters: 1 id: 530 unit: def __init__() file: research/gam/gam/models/models_base.py start line: 0 end line: 0 size: 7 LOC McCabe index: 1 number of parameters: 3 id: 531 unit: def __init__() file: research/multi_representation_adversary/multi_representation_adversary/attacks.py start line: 0 end line: 0 size: 7 LOC McCabe index: 1 number of parameters: 6 id: 532 unit: def select() file: research/multi_representation_adversary/multi_representation_adversary/selectors.py start line: 0 end line: 0 size: 7 LOC McCabe index: 3 number of parameters: 2 id: 533 unit: def valid_step() file: research/kg_hyp_emb/learning/trainer.py start line: 0 end line: 0 size: 7 LOC McCabe index: 2 number of parameters: 3 id: 534 unit: def mobius_add() file: research/kg_hyp_emb/utils/hyperbolic.py start line: 0 end line: 0 size: 7 LOC McCabe index: 1 number of parameters: 3 id: 535 unit: def avg_both() file: research/kg_hyp_emb/utils/train.py start line: 0 end line: 0 size: 7 LOC McCabe index: 2 number of parameters: 3 id: 536 unit: def format_metrics() file: research/kg_hyp_emb/utils/train.py start line: 0 end line: 0 size: 7 LOC McCabe index: 1 number of parameters: 2 id: 537 unit: def get_queries() file: research/kg_hyp_emb/models/hyperbolic.py start line: 0 end line: 0 size: 7 LOC McCabe index: 1 number of parameters: 2 id: 538 unit: def __init__() file: research/gnn-survey/layers.py start line: 0 end line: 0 size: 7 LOC McCabe index: 1 number of parameters: 5 id: 539 unit: def __init__() file: research/gnn-survey/layers.py start line: 0 end line: 0 size: 7 LOC McCabe index: 1 number of parameters: 5 id: 540 unit: def sparse_matrix_to_tf_sparse_tensor() file: research/gnn-survey/utils.py start line: 0 end line: 0 size: 7 LOC McCabe index: 1 number of parameters: 1 id: 541 unit: def call() file: neural_structured_learning/experimental/gnn.py start line: 0 end line: 0 size: 6 LOC McCabe index: 1 number of parameters: 2 id: 542 unit: def _apply_feature_constraints() file: neural_structured_learning/lib/adversarial_neighbor.py start line: 0 end line: 0 size: 6 LOC McCabe index: 3 number of parameters: 3 id: 543 unit: def _reduce_across_tensors() file: neural_structured_learning/lib/utils.py start line: 0 end line: 0 size: 6 LOC McCabe index: 3 number of parameters: 2 id: 544 unit: def strip_neighbor_features() file: neural_structured_learning/lib/utils.py start line: 0 end line: 0 size: 6 LOC McCabe index: 3 number of parameters: 2 id: 545 unit: def adv_regularizer() file: neural_structured_learning/lib/regularizer.py start line: 0 end line: 0 size: 6 LOC McCabe index: 1 number of parameters: 4 id: 546 unit: def _generate_edges_for_bucket() file: neural_structured_learning/tools/build_graph.py start line: 0 end line: 0 size: 6 LOC McCabe index: 5 number of parameters: 3 id: 547 unit: def get_config() file: neural_structured_learning/keras/layers/neighbor_features.py start line: 0 end line: 0 size: 6 LOC McCabe index: 2 number of parameters: 1 id: 548 unit: def _is_binary_classification_loss() file: neural_structured_learning/keras/adversarial_regularization.py start line: 0 end line: 0 size: 6 LOC McCabe index: 2 number of parameters: 1 id: 549 unit: def _get_or_create_base_output_names() file: neural_structured_learning/keras/adversarial_regularization.py start line: 0 end line: 0 size: 6 LOC McCabe index: 3 number of parameters: 2 id: 550 unit: def build_mlp() file: research/neural_clustering/models/ncp_models.py start line: 0 end line: 0 size: 6 LOC McCabe index: 2 number of parameters: 3 id: 551 unit: def increment_last_dim() file: research/carls/util/array_ops.py start line: 0 end line: 0 size: 6 LOC McCabe index: 1 number of parameters: 2 id: 552 unit: void AddOrUpdateFeature() file: research/carls/base/input_context_helper.cc start line: 501 end line: 506 size: 6 LOC McCabe index: 1 number of parameters: 3 id: 553 unit: static void InitInternalMaps() file: research/carls/base/proto_factory.h start line: 107 end line: 112 size: 6 LOC McCabe index: 1 number of parameters: 0 id: 554 unit: InMemoryEmbeddingVector ToInMemoryEmbeddingVector() file: research/carls/base/embedding_helper.cc start line: 41 end line: 46 size: 6 LOC McCabe index: 1 number of parameters: 1 id: 555 unit: bool ComputeCosineSimilarity() file: research/carls/base/embedding_helper.cc start line: 76 end line: 81 size: 6 LOC McCabe index: 1 number of parameters: 3 id: 556 unit: bool ComputeCosineSimilarity() file: research/carls/base/embedding_helper.cc start line: 84 end line: 89 size: 6 LOC McCabe index: 1 number of parameters: 3 id: 557 unit: void MakeErrorStream::Impl::CheckNotDone() file: research/carls/base/status_helper.cc start line: 201 end line: 206 size: 6 LOC McCabe index: 2 number of parameters: 0 id: 558 unit: def _get_shape_as_list() file: research/carls/models/caml/sparse_features.py start line: 0 end line: 0 size: 6 LOC McCabe index: 3 number of parameters: 1 id: 559 unit: def _sample_next_edges() file: research/a2n/dataset.py start line: 0 end line: 0 size: 6 LOC McCabe index: 3 number of parameters: 2 id: 560 unit: def get_inverse_relation_from_name() file: research/a2n/graph.py start line: 0 end line: 0 size: 6 LOC McCabe index: 2 number of parameters: 2 id: 561 unit: def main() file: research/a2n/train.py start line: 0 end line: 0 size: 6 LOC McCabe index: 4 number of parameters: 1 id: 562 unit: def embed() file: research/a2n/encoders.py start line: 0 end line: 0 size: 6 LOC McCabe index: 1 number of parameters: 3 id: 563 unit: def _extend_label_set() file: research/gam/gam/trainer/trainer_cotrain.py start line: 0 end line: 0 size: 6 LOC McCabe index: 3 number of parameters: 4 id: 564 unit: def predict() file: research/gam/gam/trainer/trainer_classification.py start line: 0 end line: 0 size: 6 LOC McCabe index: 1 number of parameters: 4 id: 565 unit: def _compute_ratio_pos_neg() file: research/gam/gam/trainer/trainer_agreement.py start line: 0 end line: 0 size: 6 LOC McCabe index: 3 number of parameters: 2 id: 566 unit: def entropy_y_x() file: research/gam/gam/trainer/adversarial_sparse.py start line: 0 end line: 0 size: 6 LOC McCabe index: 1 number of parameters: 2 id: 567 unit: def parse_layers_string() file: research/gam/gam/experiments/helper.py start line: 0 end line: 0 size: 6 LOC McCabe index: 3 number of parameters: 1 id: 568 unit: def dot() file: research/gam/gam/models/gcn.py start line: 0 end line: 0 size: 6 LOC McCabe index: 2 number of parameters: 3 id: 569 unit: def construct_representation_selector() file: research/multi_representation_adversary/multi_representation_adversary/selectors.py start line: 0 end line: 0 size: 6 LOC McCabe index: 1 number of parameters: 4 id: 570 unit: def get_training_dataset() file: research/multi_representation_adversary/multi_representation_adversary/data.py start line: 0 end line: 0 size: 6 LOC McCabe index: 1 number of parameters: 4 id: 571 unit: def load_checkpoint() file: research/multi_representation_adversary/multi_representation_adversary/helper.py start line: 0 end line: 0 size: 6 LOC McCabe index: 1 number of parameters: 2 id: 572 unit: def reduce_lr() file: research/kg_hyp_emb/learning/trainer.py start line: 0 end line: 0 size: 6 LOC McCabe index: 2 number of parameters: 1 id: 573 unit: def get_config_dict() file: research/kg_hyp_emb/utils/train.py start line: 0 end line: 0 size: 6 LOC McCabe index: 3 number of parameters: 0 id: 574 unit: def get_queries() file: research/kg_hyp_emb/models/hyperbolic.py start line: 0 end line: 0 size: 6 LOC McCabe index: 1 number of parameters: 2 id: 575 unit: def normalize_features() file: research/gnn-survey/utils.py start line: 0 end line: 0 size: 6 LOC McCabe index: 1 number of parameters: 1 id: 576 unit: def _apply_transform() file: neural_structured_learning/lib/distances.py start line: 0 end line: 0 size: 5 LOC McCabe index: 2 number of parameters: 3 id: 577 unit: def _is_reduced_by_average() file: neural_structured_learning/lib/distances.py start line: 0 end line: 0 size: 5 LOC McCabe index: 1 number of parameters: 1 id: 578 unit: def _is_new_edge() file: neural_structured_learning/tools/build_graph.py start line: 0 end line: 0 size: 5 LOC McCabe index: 2 number of parameters: 3 id: 579 unit: def __init__() file: neural_structured_learning/keras/layers/pairwise_distance.py start line: 0 end line: 0 size: 5 LOC McCabe index: 2 number of parameters: 3 id: 580 unit: def _build_loss_and_metric_fns() file: neural_structured_learning/keras/adversarial_regularization.py start line: 0 end line: 0 size: 5 LOC McCabe index: 1 number of parameters: 2 id: 581 unit: def batch_remap_label_ids() file: research/neural_clustering/utils/data_utils.py start line: 0 end line: 0 size: 5 LOC McCabe index: 4 number of parameters: 1 id: 582 unit: def preprocess_inputs() file: research/neural_clustering/models/ncp_base.py start line: 0 end line: 0 size: 5 LOC McCabe index: 1 number of parameters: 2 id: 583 unit: BruteForceTopkSamplerConfig GetTopkConfig() file: research/carls/candidate_sampling/brute_force_topk_sampler.cc start line: 51 end line: 55 size: 5 LOC McCabe index: 1 number of parameters: 1 id: 584 unit: def update() file: research/carls/dynamic_embedding_neighbor_cache.py start line: 0 end line: 0 size: 5 LOC McCabe index: 1 number of parameters: 3 id: 585 unit: std::vector Keys() file: research/carls/knowledge_bank/leveldb_knowledge_bank.cc start line: 91 end line: 95 size: 5 LOC McCabe index: 1 number of parameters: 0 id: 586 unit: bool Contains() file: research/carls/knowledge_bank/leveldb_knowledge_bank.cc start line: 98 end line: 102 size: 5 LOC McCabe index: 1 number of parameters: 1 id: 587 unit: bool Contains() file: research/carls/knowledge_bank/in_proto_knowledge_bank.cc start line: 65 end line: 69 size: 5 LOC McCabe index: 1 number of parameters: 1 id: 588 unit: static void Register() file: research/carls/base/proto_factory.h start line: 99 end line: 104 size: 5 LOC McCabe index: 1 number of parameters: 2 id: 589 unit: ProtoType ParseTextProtoOrDie() file: research/carls/base/proto_helper.h start line: 63 end line: 67 size: 5 LOC McCabe index: 1 number of parameters: 1 id: 590 unit: ExtendedProtoType GetExtensionProtoOrDie() file: research/carls/base/proto_helper.h start line: 72 end line: 76 size: 5 LOC McCabe index: 1 number of parameters: 1 id: 591 unit: std::vector TopN::ExtractNondestructive() file: research/carls/base/top_n.h start line: 298 end line: 302 size: 5 LOC McCabe index: 1 number of parameters: 0 id: 592 unit: std::vector TopN::ExtractUnsortedNondestructive() file: research/carls/base/top_n.h start line: 317 end line: 321 size: 5 LOC McCabe index: 1 number of parameters: 0 id: 593 unit: bool ComputeCosineSimilarity() file: research/carls/base/embedding_helper.cc start line: 92 end line: 96 size: 5 LOC McCabe index: 1 number of parameters: 3 id: 594 unit: bool ComputeDotProduct() file: research/carls/base/embedding_helper.cc start line: 112 end line: 116 size: 5 LOC McCabe index: 1 number of parameters: 3 id: 595 unit: bool ComputeDotProduct() file: research/carls/base/embedding_helper.cc start line: 119 end line: 123 size: 5 LOC McCabe index: 1 number of parameters: 3 id: 596 unit: bool ComputeDotProduct() file: research/carls/base/embedding_helper.cc start line: 126 end line: 130 size: 5 LOC McCabe index: 1 number of parameters: 3 id: 597 unit: bool contains() file: research/carls/base/async_node_hash_map.h start line: 280 end line: 284 size: 5 LOC McCabe index: 1 number of parameters: 1 id: 598 unit: def _param_dtype() file: research/carls/dynamic_normalization.py start line: 0 end line: 0 size: 5 LOC McCabe index: 4 number of parameters: 1 id: 599 unit: def get_inverse_relation_from_id() file: research/a2n/graph.py start line: 0 end line: 0 size: 5 LOC McCabe index: 1 number of parameters: 2 id: 600 unit: def softmax_crossentropy() file: research/a2n/losses.py start line: 0 end line: 0 size: 5 LOC McCabe index: 1 number of parameters: 2 id: 601 unit: def copy() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 5 LOC McCabe index: 4 number of parameters: 4 id: 602 unit: def support() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 5 LOC McCabe index: 1 number of parameters: 1 id: 603 unit: def num_features_nonzero() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 5 LOC McCabe index: 1 number of parameters: 1 id: 604 unit: def kl_divergence_with_logit() file: research/gam/gam/trainer/adversarial_dense.py start line: 0 end line: 0 size: 5 LOC McCabe index: 1 number of parameters: 2 id: 605 unit: def accuracy_binary() file: research/gam/gam/trainer/trainer_agreement.py start line: 0 end line: 0 size: 5 LOC McCabe index: 1 number of parameters: 3 id: 606 unit: def glorot() file: research/gam/gam/models/models_base.py start line: 0 end line: 0 size: 5 LOC McCabe index: 1 number of parameters: 2 id: 607 unit: def __init__() file: research/multi_representation_adversary/multi_representation_adversary/attacks.py start line: 0 end line: 0 size: 5 LOC McCabe index: 1 number of parameters: 2 id: 608 unit: def __init__() file: research/multi_representation_adversary/multi_representation_adversary/attacks.py start line: 0 end line: 0 size: 5 LOC McCabe index: 1 number of parameters: 2 id: 609 unit: def union_config() file: research/multi_representation_adversary/multi_representation_adversary/attacks.py start line: 0 end line: 0 size: 5 LOC McCabe index: 1 number of parameters: 2 id: 610 unit: def preprocess_image() file: research/multi_representation_adversary/multi_representation_adversary/data.py start line: 0 end line: 0 size: 5 LOC McCabe index: 1 number of parameters: 5 id: 611 unit: def get_neg_sample_mask() file: research/kg_hyp_emb/learning/losses.py start line: 0 end line: 0 size: 5 LOC McCabe index: 1 number of parameters: 3 id: 612 unit: def __call__() file: research/kg_hyp_emb/learning/regularizers.py start line: 0 end line: 0 size: 5 LOC McCabe index: 2 number of parameters: 2 id: 613 unit: def expmap0() file: research/kg_hyp_emb/utils/hyperbolic.py start line: 0 end line: 0 size: 5 LOC McCabe index: 1 number of parameters: 2 id: 614 unit: def count_params() file: research/kg_hyp_emb/utils/train.py start line: 0 end line: 0 size: 5 LOC McCabe index: 2 number of parameters: 1 id: 615 unit: def get_queries() file: research/kg_hyp_emb/models/euclidean.py start line: 0 end line: 0 size: 5 LOC McCabe index: 1 number of parameters: 2 id: 616 unit: def get_queries() file: research/kg_hyp_emb/models/euclidean.py start line: 0 end line: 0 size: 5 LOC McCabe index: 1 number of parameters: 2 id: 617 unit: def get_queries() file: research/kg_hyp_emb/models/euclidean.py start line: 0 end line: 0 size: 5 LOC McCabe index: 1 number of parameters: 2 id: 618 unit: def __init__() file: research/kg_hyp_emb/models/complex.py start line: 0 end line: 0 size: 5 LOC McCabe index: 1 number of parameters: 3 id: 619 unit: def __init__() file: research/gnn-survey/layers.py start line: 0 end line: 0 size: 5 LOC McCabe index: 1 number of parameters: 5 id: 620 unit: def normalize_adj_matrix() file: research/gnn-survey/utils.py start line: 0 end line: 0 size: 5 LOC McCabe index: 1 number of parameters: 1 id: 621 unit: def _kl_divergence_fn() file: neural_structured_learning/lib/distances.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 2 id: 622 unit: def _is_axis_required_in_distance_fn() file: neural_structured_learning/lib/distances.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 1 id: 623 unit: def is_differentiable_tensor() file: neural_structured_learning/lib/adversarial_neighbor.py start line: 0 end line: 0 size: 4 LOC McCabe index: 4 number of parameters: 1 id: 624 unit: def build_graph_from_config() file: neural_structured_learning/tools/build_graph.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 3 id: 625 unit: def from_config() file: neural_structured_learning/keras/layers/pairwise_distance.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 2 id: 626 unit: def _compute_total_loss() file: neural_structured_learning/keras/adversarial_regularization.py start line: 0 end line: 0 size: 4 LOC McCabe index: 2 number of parameters: 4 id: 627 unit: def save() file: neural_structured_learning/keras/adversarial_regularization.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 3 id: 628 unit: def __init__() file: research/neural_clustering/data_generators/partition.py start line: 0 end line: 0 size: 4 LOC McCabe index: 2 number of parameters: 2 id: 629 unit: def __init__() file: research/neural_clustering/models/ncp_wrapper.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 3 id: 630 unit: def loss_function() file: research/neural_clustering/models/ncp_wrapper.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 2 id: 631 unit: def call() file: research/carls/dynamic_embedding_ops.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 2 id: 632 unit: uint32_t Uniform() file: research/carls/candidate_sampling/negative_sampler.cc start line: 78 end line: 81 size: 4 LOC McCabe index: 1 number of parameters: 1 id: 633 unit: float RandFloat() file: research/carls/candidate_sampling/negative_sampler.cc start line: 84 end line: 87 size: 4 LOC McCabe index: 1 number of parameters: 0 id: 634 unit: absl::Status CandidateSampler::InsertOrUpdate() file: research/carls/candidate_sampling/candidate_sampler.cc start line: 42 end line: 45 size: 4 LOC McCabe index: 1 number of parameters: 2 id: 635 unit: absl::Status MemoryStore::Import() file: research/carls/memory_store/memory_store.cc start line: 73 end line: 76 size: 4 LOC McCabe index: 1 number of parameters: 1 id: 636 unit: size_t Size() file: research/carls/knowledge_bank/leveldb_knowledge_bank.cc start line: 85 end line: 88 size: 4 LOC McCabe index: 1 number of parameters: 0 id: 637 unit: absl::Status LeveldbKnowledgeBank::ImportInternal() file: research/carls/knowledge_bank/leveldb_knowledge_bank.cc start line: 250 end line: 253 size: 4 LOC McCabe index: 1 number of parameters: 1 id: 638 unit: size_t InProtoKnowledgeBank::Size() file: research/carls/knowledge_bank/in_proto_knowledge_bank.cc start line: 167 end line: 170 size: 4 LOC McCabe index: 1 number of parameters: 0 id: 639 unit: std::vector InProtoKnowledgeBank::Keys() file: research/carls/knowledge_bank/in_proto_knowledge_bank.cc start line: 172 end line: 175 size: 4 LOC McCabe index: 1 number of parameters: 0 id: 640 unit: size_t KnowledgeBankGrpcServiceImpl::KnowledgeBankSize() file: research/carls/knowledge_bank_grpc_service.cc start line: 348 end line: 351 size: 4 LOC McCabe index: 1 number of parameters: 0 id: 641 unit: bool FeatureExists() file: research/carls/base/input_context_helper.cc start line: 49 end line: 52 size: 4 LOC McCabe index: 1 number of parameters: 2 id: 642 unit: void ThreadBundle::Inc() file: research/carls/base/thread_bundle.cc start line: 79 end line: 82 size: 4 LOC McCabe index: 1 number of parameters: 0 id: 643 unit: void ThreadBundle::Dec() file: research/carls/base/thread_bundle.cc start line: 84 end line: 87 size: 4 LOC McCabe index: 2 number of parameters: 0 id: 644 unit: void TopN::Reset() file: research/carls/base/top_n.h start line: 334 end line: 337 size: 4 LOC McCabe index: 1 number of parameters: 0 id: 645 unit: absl::Status IsDirectory() file: research/carls/base/file_helper.cc start line: 105 end line: 108 size: 4 LOC McCabe index: 1 number of parameters: 1 id: 646 unit: absl::Status RecursivelyCreateDir() file: research/carls/base/file_helper.cc start line: 134 end line: 137 size: 4 LOC McCabe index: 1 number of parameters: 1 id: 647 unit: static absl::Status MakeStatus() file: research/carls/base/status_helper.cc start line: 34 end line: 37 size: 4 LOC McCabe index: 1 number of parameters: 2 id: 648 unit: absl::Status ToAbslStatus() file: research/carls/base/status_helper.cc start line: 210 end line: 213 size: 4 LOC McCabe index: 1 number of parameters: 1 id: 649 unit: absl::Status ToAbslStatus() file: research/carls/base/status_helper.cc start line: 215 end line: 218 size: 4 LOC McCabe index: 1 number of parameters: 1 id: 650 unit: grpc::Status ToGrpcStatus() file: research/carls/base/status_helper.cc start line: 220 end line: 223 size: 4 LOC McCabe index: 1 number of parameters: 1 id: 651 unit: def _get_training_value() file: research/carls/dynamic_normalization.py start line: 0 end line: 0 size: 4 LOC McCabe index: 2 number of parameters: 2 id: 652 unit: T DieIfNull() file: research/carls/dynamic_embedding_manager.cc start line: 45 end line: 48 size: 4 LOC McCabe index: 2 number of parameters: 4 id: 653 unit: def __init__() file: research/carls/models/caml/sparse_features.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 3 id: 654 unit: def call() file: research/carls/models/caml/sparse_features.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 2 id: 655 unit: def __init__() file: research/a2n/graph.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 0 id: 656 unit: def add_embedding_to_projector() file: research/a2n/train.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 3 id: 657 unit: def read_graph_data() file: research/a2n/train.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 0 id: 658 unit: def get_from_collection() file: research/a2n/encoders.py start line: 0 end line: 0 size: 4 LOC McCabe index: 2 number of parameters: 2 id: 659 unit: def __init__() file: research/a2n/encoders.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 3 id: 660 unit: def __init__() file: research/a2n/encoders.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 8 id: 661 unit: def __init__() file: research/a2n/encoders.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 10 id: 662 unit: def embed() file: research/a2n/encoders.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 3 id: 663 unit: def combine_dict() file: research/a2n/utils.py start line: 0 end line: 0 size: 4 LOC McCabe index: 2 number of parameters: 2 id: 664 unit: def get_features() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 2 id: 665 unit: def update_labels() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 3 id: 666 unit: def __init__() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 4 id: 667 unit: def convert_image() file: research/gam/gam/data/preprocessing.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 1 id: 668 unit: def get_normalized_vector() file: research/gam/gam/trainer/adversarial_dense.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 1 id: 669 unit: def get_normalizing_constant() file: research/gam/gam/trainer/adversarial_dense.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 1 id: 670 unit: def entropy_y_x() file: research/gam/gam/trainer/adversarial_dense.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 1 id: 671 unit: def predict() file: research/gam/gam/trainer/trainer_agreement.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 6 id: 672 unit: def logsoftmax() file: research/gam/gam/trainer/adversarial_sparse.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 1 id: 673 unit: def normalize_predictions() file: research/gam/gam/models/cnn.py start line: 0 end line: 0 size: 4 LOC McCabe index: 2 number of parameters: 2 id: 674 unit: def normalize_predictions() file: research/gam/gam/models/gcn.py start line: 0 end line: 0 size: 4 LOC McCabe index: 2 number of parameters: 2 id: 675 unit: def __call__() file: research/gam/gam/models/gcn.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 2 id: 676 unit: def normalize_predictions() file: research/gam/gam/models/mlp.py start line: 0 end line: 0 size: 4 LOC McCabe index: 2 number of parameters: 2 id: 677 unit: def save() file: research/gam/gam/models/models_base.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 4 id: 678 unit: def load() file: research/gam/gam/models/models_base.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 4 id: 679 unit: def normalize_predictions() file: research/gam/gam/models/wide_resnet.py start line: 0 end line: 0 size: 4 LOC McCabe index: 2 number of parameters: 2 id: 680 unit: def __init__() file: research/multi_representation_adversary/multi_representation_adversary/attacks.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 3 id: 681 unit: def _update() file: research/multi_representation_adversary/multi_representation_adversary/selectors.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 3 id: 682 unit: def __init__() file: research/multi_representation_adversary/multi_representation_adversary/selectors.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 3 id: 683 unit: def learning_rate_scheduler() file: research/multi_representation_adversary/multi_representation_adversary/trainer.py start line: 0 end line: 0 size: 4 LOC McCabe index: 3 number of parameters: 4 id: 684 unit: def logmap0() file: research/kg_hyp_emb/utils/hyperbolic.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 2 id: 685 unit: def get_queries() file: research/kg_hyp_emb/models/euclidean.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 2 id: 686 unit: def get_queries() file: research/kg_hyp_emb/models/euclidean.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 2 id: 687 unit: def __init__() file: research/kg_hyp_emb/models/hyperbolic.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 3 id: 688 unit: def cal_acc() file: research/gnn-survey/utils.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 2 id: 689 unit: def call() file: research/gnn-survey/models.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 2 id: 690 unit: def call() file: research/gnn-survey/models.py start line: 0 end line: 0 size: 4 LOC McCabe index: 2 number of parameters: 2 id: 691 unit: def call() file: research/gnn-survey/models.py start line: 0 end line: 0 size: 4 LOC McCabe index: 1 number of parameters: 2 id: 692 unit: def __init__() file: neural_structured_learning/experimental/gnn.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 3 id: 693 unit: def __init__() file: neural_structured_learning/experimental/gnn.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 3 id: 694 unit: def _assert_valid_axis() file: neural_structured_learning/lib/distances.py start line: 0 end line: 0 size: 3 LOC McCabe index: 4 number of parameters: 2 id: 695 unit: def call() file: neural_structured_learning/keras/layers/neighbor_features.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 3 id: 696 unit: def _include_feature() file: neural_structured_learning/keras/layers/neighbor_features.py start line: 0 end line: 0 size: 3 LOC McCabe index: 3 number of parameters: 2 id: 697 unit: def from_config() file: neural_structured_learning/keras/layers/neighbor_features.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 2 id: 698 unit: def compile() file: neural_structured_learning/keras/graph_regularization.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 3 id: 699 unit: def _is_sparse_categorical_loss() file: neural_structured_learning/keras/adversarial_regularization.py start line: 0 end line: 0 size: 3 LOC McCabe index: 2 number of parameters: 1 id: 700 unit: def batch_multinomial_sampling() file: research/neural_clustering/data_generators/partition.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 1 id: 701 unit: bool operator() file: research/carls/candidate_sampling/brute_force_topk_sampler.cc start line: 46 end line: 48 size: 3 LOC McCabe index: 1 number of parameters: 0 id: 702 unit: float StableExpectedCount() file: research/carls/candidate_sampling/negative_sampler.cc start line: 34 end line: 36 size: 3 LOC McCabe index: 1 number of parameters: 2 id: 703 unit: int CandidateSampler::NumOfCandidates() file: research/carls/candidate_sampling/candidate_sampler.cc start line: 47 end line: 49 size: 3 LOC McCabe index: 1 number of parameters: 0 id: 704 unit: def get_all_collection() file: research/carls/context.py start line: 0 end line: 0 size: 3 LOC McCabe index: 2 number of parameters: 0 id: 705 unit: def clear_all_collection() file: research/carls/context.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 0 id: 706 unit: void push() file: research/carls/base/top_n.h start line: 116 end line: 118 size: 3 LOC McCabe index: 2 number of parameters: 1 id: 707 unit: void push() file: research/carls/base/top_n.h start line: 119 end line: 121 size: 3 LOC McCabe index: 2 number of parameters: 2 id: 708 unit: bool IsAbsolutePath() file: research/carls/base/file_helper.cc start line: 26 end line: 28 size: 3 LOC McCabe index: 2 number of parameters: 1 id: 709 unit: absl::string_view Dirname() file: research/carls/base/file_helper.cc start line: 110 end line: 112 size: 3 LOC McCabe index: 1 number of parameters: 1 id: 710 unit: absl::string_view Basename() file: research/carls/base/file_helper.cc start line: 114 end line: 116 size: 3 LOC McCabe index: 1 number of parameters: 1 id: 711 unit: std::string JoinPath() file: research/carls/base/file_helper.h start line: 46 end line: 48 size: 3 LOC McCabe index: 1 number of parameters: 1 id: 712 unit: iterator begin() file: research/carls/base/async_node_hash_map.h start line: 180 end line: 182 size: 3 LOC McCabe index: 1 number of parameters: 0 id: 713 unit: iterator end() file: research/carls/base/async_node_hash_map.h start line: 183 end line: 185 size: 3 LOC McCabe index: 1 number of parameters: 0 id: 714 unit: std::pair insert_or_assign() file: research/carls/base/async_node_hash_map.h start line: 224 end line: 226 size: 3 LOC McCabe index: 3 number of parameters: 2 id: 715 unit: std::pair insert_or_assign() file: research/carls/base/async_node_hash_map.h start line: 229 end line: 231 size: 3 LOC McCabe index: 2 number of parameters: 2 id: 716 unit: std::pair insert_or_assign() file: research/carls/base/async_node_hash_map.h start line: 234 end line: 236 size: 3 LOC McCabe index: 2 number of parameters: 2 id: 717 unit: std::pair insert_or_assign() file: research/carls/base/async_node_hash_map.h start line: 239 end line: 241 size: 3 LOC McCabe index: 1 number of parameters: 2 id: 718 unit: unsigned int get_partition() file: research/carls/base/async_node_hash_map.h start line: 244 end line: 246 size: 3 LOC McCabe index: 1 number of parameters: 1 id: 719 unit: def get_next_kg_actions() file: research/a2n/graph.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 0 id: 720 unit: def get_next_kg_actions_sampled() file: research/a2n/graph.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 0 id: 721 unit: def add_histogram_summary() file: research/a2n/utils.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 2 id: 722 unit: def source_attention_kbc_model() file: research/a2n/models.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 0 id: 723 unit: def main() file: research/a2n/generate_random_graph.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 1 id: 724 unit: def load_from_pickle() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 1 id: 725 unit: def __init__() file: research/gam/gam/trainer/trainer_classification.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 2 id: 726 unit: def train() file: research/gam/gam/trainer/trainer_classification.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 4 id: 727 unit: def __init__() file: research/gam/gam/trainer/trainer_agreement.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 3 id: 728 unit: def create_agreement_prediction() file: research/gam/gam/trainer/trainer_agreement.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 4 id: 729 unit: def _hash() file: research/multi_representation_adversary/multi_representation_adversary/evaluator.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 1 id: 730 unit: def eta_scheduler() file: research/multi_representation_adversary/multi_representation_adversary/selectors.py start line: 0 end line: 0 size: 3 LOC McCabe index: 3 number of parameters: 2 id: 731 unit: def _select() file: research/multi_representation_adversary/multi_representation_adversary/selectors.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 1 id: 732 unit: def normalize_image() file: research/multi_representation_adversary/multi_representation_adversary/data.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 2 id: 733 unit: def get_validation_dataset() file: research/multi_representation_adversary/multi_representation_adversary/data.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 3 id: 734 unit: def get_test_dataset() file: research/multi_representation_adversary/multi_representation_adversary/data.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 2 id: 735 unit: def loss_from_logits() file: research/kg_hyp_emb/learning/losses.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 4 id: 736 unit: def loss_from_logits() file: research/kg_hyp_emb/learning/losses.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 4 id: 737 unit: def __init__() file: research/kg_hyp_emb/learning/regularizers.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 2 id: 738 unit: def artanh() file: research/kg_hyp_emb/utils/hyperbolic.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 1 id: 739 unit: def project() file: research/kg_hyp_emb/utils/hyperbolic.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 2 id: 740 unit: def get_rhs() file: research/kg_hyp_emb/models/euclidean.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 2 id: 741 unit: def get_candidates() file: research/kg_hyp_emb/models/euclidean.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 1 id: 742 unit: def __init__() file: research/kg_hyp_emb/models/euclidean.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 3 id: 743 unit: def __init__() file: research/kg_hyp_emb/models/euclidean.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 3 id: 744 unit: def get_reflection_queries() file: research/kg_hyp_emb/models/euclidean.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 3 id: 745 unit: def get_rotation_queries() file: research/kg_hyp_emb/models/euclidean.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 3 id: 746 unit: def get_rhs() file: research/kg_hyp_emb/models/hyperbolic.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 2 id: 747 unit: def get_candidates() file: research/kg_hyp_emb/models/hyperbolic.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 1 id: 748 unit: def similarity_score() file: research/kg_hyp_emb/models/hyperbolic.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 4 id: 749 unit: def get_reflection_queries() file: research/kg_hyp_emb/models/hyperbolic.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 3 id: 750 unit: def get_rotation_queries() file: research/kg_hyp_emb/models/hyperbolic.py start line: 0 end line: 0 size: 3 LOC McCabe index: 1 number of parameters: 3 id: 751 unit: def _make_ragged() file: neural_structured_learning/experimental/gnn.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 3 id: 752 unit: def graph_call() file: neural_structured_learning/experimental/gnn.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 3 id: 753 unit: def __init__() file: neural_structured_learning/lib/abstract_gen_neighbor.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 754 unit: def gen_neighbor() file: neural_structured_learning/lib/abstract_gen_neighbor.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 755 unit: def _expand_to_rank() file: neural_structured_learning/lib/utils.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 2 id: 756 unit: def all() file: neural_structured_learning/configs/configs.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 757 unit: def all() file: neural_structured_learning/configs/configs.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 758 unit: def all() file: neural_structured_learning/configs/configs.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 759 unit: def all() file: neural_structured_learning/configs/configs.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 760 unit: def all() file: neural_structured_learning/configs/configs.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 761 unit: def evaluate() file: neural_structured_learning/keras/graph_regularization.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 3 id: 762 unit: def predict() file: neural_structured_learning/keras/graph_regularization.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 3 id: 763 unit: def call() file: neural_structured_learning/keras/adversarial_regularization.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 3 id: 764 unit: def generate_single() file: research/neural_clustering/data_generators/partition.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 2 id: 765 unit: def sample() file: research/neural_clustering/models/ncp_wrapper.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 2 id: 766 unit: def sample() file: research/neural_clustering/models/ncp_wrapper.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 2 id: 767 unit: explicit MakeErrorStreamWithOutput() file: research/carls/base/status_helper.h start line: 51 end line: 52 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 768 unit: explicit StatusAdaptorForMacros() file: research/carls/base/status_helper.h start line: 159 end line: 160 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 769 unit: explicit SaveKnowledgeBankOp() file: research/carls/kernels/io_ops.cc start line: 80 end line: 81 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 770 unit: explicit RestoreKnowledgeBankOp() file: research/carls/kernels/io_ops.cc start line: 123 end line: 124 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 771 unit: explicit DynamicGaussianMemoryLookupOp() file: research/carls/kernels/dynamic_memory_ops.cc start line: 88 end line: 89 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 772 unit: explicit SampledLogitsLookupOp() file: research/carls/kernels/sampled_logits_ops.cc start line: 103 end line: 104 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 773 unit: explicit SampledLogitsLookupGradOp() file: research/carls/kernels/sampled_logits_ops.cc start line: 164 end line: 165 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 774 unit: explicit DynamicEmbeddingLookupOp() file: research/carls/kernels/dynamic_embedding_ops.cc start line: 140 end line: 141 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 775 unit: explicit DynamicEmbeddingUpdateOp() file: research/carls/kernels/dynamic_embedding_ops.cc start line: 187 end line: 188 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 776 unit: explicit DynamicEmbeddingLookupGradOp() file: research/carls/kernels/dynamic_embedding_ops.cc start line: 254 end line: 255 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 777 unit: def __init__() file: research/carls/neighbor_cache_client.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 2 id: 778 unit: def lookup() file: research/carls/neighbor_cache_client.py start line: 0 end line: 0 size: 2 LOC McCabe index: 2 number of parameters: 2 id: 779 unit: def update() file: research/carls/neighbor_cache_client.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 3 id: 780 unit: def key_feature_name() file: research/carls/neighbor_cache_client.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 781 unit: def trainable() file: research/carls/dynamic_normalization.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 782 unit: def trainable() file: research/carls/dynamic_normalization.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 2 id: 783 unit: def variable_map() file: research/carls/models/caml/sparse_features.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 784 unit: def __init__() file: research/a2n/encoders.py start line: 0 end line: 0 size: 2 LOC McCabe index: 2 number of parameters: 1 id: 785 unit: def add_to_collection() file: research/a2n/encoders.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 3 id: 786 unit: def make_feed_dict() file: research/a2n/encoders.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 787 unit: def make_feed_dict() file: research/a2n/encoders.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 788 unit: def make_feed_dict() file: research/a2n/encoders.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 789 unit: def make_feed_dict() file: research/a2n/encoders.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 790 unit: def make_feed_dict() file: research/a2n/encoders.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 791 unit: def make_feed_dict() file: research/a2n/encoders.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 792 unit: def copy_labels() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 793 unit: def get_labels() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 2 id: 794 unit: def num_train() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 795 unit: def num_val() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 796 unit: def num_test() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 797 unit: def num_unlabeled() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 798 unit: def get_indices_train() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 799 unit: def get_indices_unlabeled() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 800 unit: def get_indices_val() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 801 unit: def get_indices_test() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 802 unit: def save_to_pickle() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 2 id: 803 unit: def label_samples() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 3 id: 804 unit: def get_indices_train() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 805 unit: def get_indices_val() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 806 unit: def get_indices_test() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 807 unit: def get_indices_unlabeled() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 808 unit: def get_features() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 2 id: 809 unit: def get_labels() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 2 id: 810 unit: def get_original_labels() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 2 id: 811 unit: def num_samples() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 812 unit: def num_features() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 813 unit: def features() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 814 unit: def features_shape() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 815 unit: def num_classes() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 816 unit: def num_train() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 817 unit: def num_val() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 818 unit: def num_test() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 819 unit: def num_unlabeled() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 820 unit: def copy_labels() file: research/gam/gam/data/dataset.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 821 unit: def train() file: research/gam/gam/trainer/trainer_base.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 3 id: 822 unit: def train() file: research/gam/gam/trainer/trainer_agreement.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 4 id: 823 unit: def train() file: research/gam/gam/trainer/trainer_agreement.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 3 id: 824 unit: def get_predictions_and_params() file: research/gam/gam/models/models_base.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 4 id: 825 unit: def get_loss() file: research/gam/gam/models/models_base.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 5 id: 826 unit: def normalize_predictions() file: research/gam/gam/models/models_base.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 2 id: 827 unit: def __call__() file: research/gam/gam/models/models_base.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 3 id: 828 unit: def identity() file: research/multi_representation_adversary/multi_representation_adversary/transforms.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 829 unit: def inverse_identity() file: research/multi_representation_adversary/multi_representation_adversary/transforms.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 830 unit: def attack() file: research/multi_representation_adversary/multi_representation_adversary/attacks.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 6 id: 831 unit: def attack() file: research/multi_representation_adversary/multi_representation_adversary/attacks.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 6 id: 832 unit: def attack() file: research/multi_representation_adversary/multi_representation_adversary/attacks.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 6 id: 833 unit: def single_rotation_config() file: research/multi_representation_adversary/multi_representation_adversary/attacks.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 834 unit: def union_rotation_config() file: research/multi_representation_adversary/multi_representation_adversary/attacks.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 835 unit: def construct_attack() file: research/multi_representation_adversary/multi_representation_adversary/attacks.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 836 unit: def should_update() file: research/multi_representation_adversary/multi_representation_adversary/selectors.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 2 id: 837 unit: def _select() file: research/multi_representation_adversary/multi_representation_adversary/selectors.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 838 unit: def _update() file: research/multi_representation_adversary/multi_representation_adversary/selectors.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 3 id: 839 unit: def _select() file: research/multi_representation_adversary/multi_representation_adversary/selectors.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 840 unit: def _select() file: research/multi_representation_adversary/multi_representation_adversary/selectors.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 841 unit: def _update() file: research/multi_representation_adversary/multi_representation_adversary/selectors.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 3 id: 842 unit: def convert_to_tuples() file: research/multi_representation_adversary/multi_representation_adversary/data.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 843 unit: def get_filters() file: research/kg_hyp_emb/datasets/datasets.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 844 unit: def get_shape() file: research/kg_hyp_emb/datasets/datasets.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 845 unit: def loss_from_logits() file: research/kg_hyp_emb/learning/losses.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 4 id: 846 unit: def compute_norm() file: research/kg_hyp_emb/learning/regularizers.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 2 id: 847 unit: def get_config() file: research/kg_hyp_emb/learning/regularizers.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 848 unit: def __call__() file: research/kg_hyp_emb/learning/regularizers.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 2 id: 849 unit: def get_config() file: research/kg_hyp_emb/learning/regularizers.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 850 unit: def compute_norm() file: research/kg_hyp_emb/learning/regularizers.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 2 id: 851 unit: def compute_norm() file: research/kg_hyp_emb/learning/regularizers.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 2 id: 852 unit: def compute_norm() file: research/kg_hyp_emb/learning/regularizers.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 2 id: 853 unit: def compute_norm() file: research/kg_hyp_emb/learning/regularizers.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 2 id: 854 unit: def tanh() file: research/kg_hyp_emb/utils/hyperbolic.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 855 unit: def get_rhs() file: research/kg_hyp_emb/models/complex.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 2 id: 856 unit: def get_candidates() file: research/kg_hyp_emb/models/complex.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 857 unit: def get_queries() file: research/kg_hyp_emb/models/base.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 2 id: 858 unit: def get_rhs() file: research/kg_hyp_emb/models/base.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 2 id: 859 unit: def get_candidates() file: research/kg_hyp_emb/models/base.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 1 id: 860 unit: def similarity_score() file: research/kg_hyp_emb/models/base.py start line: 0 end line: 0 size: 2 LOC McCabe index: 1 number of parameters: 4 id: 861 unit: std::string address() file: research/carls/kbs_server_helper.h start line: 62 end line: 62 size: 1 LOC McCabe index: 1 number of parameters: 0 id: 862 unit: int port() file: research/carls/kbs_server_helper.h start line: 65 end line: 65 size: 1 LOC McCabe index: 1 number of parameters: 0 id: 863 unit: void KbsServerHelper::WaitForTermination() file: research/carls/kbs_server_helper.cc start line: 155 end line: 155 size: 1 LOC McCabe index: 1 number of parameters: 0 id: 864 unit: void KbsServerHelper::Terminate() file: research/carls/kbs_server_helper.cc start line: 157 end line: 157 size: 1 LOC McCabe index: 1 number of parameters: 0 id: 865 unit: int embedding_dimension() file: research/carls/knowledge_bank/knowledge_bank.h start line: 86 end line: 86 size: 1 LOC McCabe index: 1 number of parameters: 0 id: 866 unit: constexpr absl::string_view ExtensionName() file: research/carls/base/proto_factory.h start line: 33 end line: 33 size: 1 LOC McCabe index: 1 number of parameters: 0 id: 867 unit: void ThreadBundle::JoinAll() file: research/carls/base/thread_bundle.cc start line: 69 end line: 69 size: 1 LOC McCabe index: 1 number of parameters: 0 id: 868 unit: operator absl::Status() file: research/carls/base/status_helper.h start line: 62 end line: 62 size: 1 LOC McCabe index: 1 number of parameters: 0 id: 869 unit: absl::Status GetStatus() file: research/carls/base/status_helper.h start line: 147 end line: 147 size: 1 LOC McCabe index: 1 number of parameters: 0 id: 870 unit: explicit operator bool() file: research/carls/base/status_helper.h start line: 165 end line: 165 size: 1 LOC McCabe index: 1 number of parameters: 0 id: 871 unit: explicit TopN() file: research/carls/base/top_n.h start line: 90 end line: 90 size: 1 LOC McCabe index: 1 number of parameters: 1 id: 872 unit: size_t limit() file: research/carls/base/top_n.h start line: 93 end line: 93 size: 1 LOC McCabe index: 1 number of parameters: 0 id: 873 unit: size_t size() file: research/carls/base/top_n.h start line: 97 end line: 97 size: 1 LOC McCabe index: 1 number of parameters: 0 id: 874 unit: bool empty() file: research/carls/base/top_n.h start line: 99 end line: 99 size: 1 LOC McCabe index: 1 number of parameters: 0 id: 875 unit: void reserve() file: research/carls/base/top_n.h start line: 104 end line: 104 size: 1 LOC McCabe index: 1 number of parameters: 1 id: 876 unit: void push() file: research/carls/base/top_n.h start line: 111 end line: 111 size: 1 LOC McCabe index: 1 number of parameters: 1 id: 877 unit: void push() file: research/carls/base/top_n.h start line: 112 end line: 112 size: 1 LOC McCabe index: 1 number of parameters: 2 id: 878 unit: UnsortedIterator unsorted_begin() file: research/carls/base/top_n.h start line: 172 end line: 172 size: 1 LOC McCabe index: 1 number of parameters: 0 id: 879 unit: UnsortedIterator unsorted_end() file: research/carls/base/top_n.h start line: 173 end line: 173 size: 1 LOC McCabe index: 1 number of parameters: 0 id: 880 unit: void MakeErrorStream::CheckNotDone() file: research/carls/base/status_helper.cc start line: 129 end line: 129 size: 1 LOC McCabe index: 1 number of parameters: 0 id: 881 unit: explicit TopkLookupOp() file: research/carls/kernels/topk_ops.cc start line: 68 end line: 68 size: 1 LOC McCabe index: 1 number of parameters: 1 id: 882 unit: std::string DebugString() file: research/carls/kernels/dynamic_embedding_manager_resource.h start line: 35 end line: 35 size: 1 LOC McCabe index: 1 number of parameters: 0