def __init__()

in research/gam/gam/trainer/trainer_cotrain.py [0:0]


  def __init__(self,
               model_cls,
               model_agr,
               max_num_iter_cotrain,
               min_num_iter_cls,
               max_num_iter_cls,
               num_iter_after_best_val_cls,
               min_num_iter_agr,
               max_num_iter_agr,
               num_iter_after_best_val_agr,
               num_samples_to_label,
               min_confidence_new_label=0.0,
               keep_label_proportions=False,
               num_warm_up_iter_agr=1,
               optimizer=tf.train.AdamOptimizer,
               gradient_clip=None,
               batch_size_agr=128,
               batch_size_cls=128,
               learning_rate_cls=1e-3,
               learning_rate_agr=1e-3,
               warm_start_cls=False,
               warm_start_agr=False,
               enable_summaries=True,
               enable_summaries_per_model=False,
               summary_dir=None,
               summary_step_cls=1000,
               summary_step_agr=1000,
               logging_step_cls=1,
               logging_step_agr=1,
               eval_step_cls=1,
               eval_step_agr=1,
               checkpoints_step=None,
               checkpoints_dir=None,
               data_dir=None,
               abs_loss_chg_tol=1e-10,
               rel_loss_chg_tol=1e-7,
               loss_chg_iter_below_tol=30,
               use_perfect_agr=False,
               use_perfect_cls=False,
               ratio_valid_agr=0,
               max_samples_valid_agr=None,
               weight_decay_cls=None,
               weight_decay_schedule_cls=None,
               weight_decay_agr=None,
               weight_decay_schedule_agr=None,
               reg_weight_ll=0,
               reg_weight_lu=0,
               reg_weight_uu=0,
               num_pairs_reg=100,
               reg_weight_vat=0,
               use_ent_min=False,
               penalize_neg_agr=False,
               use_l2_cls=True,
               first_iter_original=True,
               inductive=False,
               seed=None,
               eval_acc_pred_by_agr=False,
               num_neighbors_pred_by_agr=20,
               lr_decay_rate_cls=None,
               lr_decay_steps_cls=None,
               lr_decay_rate_agr=None,
               lr_decay_steps_agr=None,
               load_from_checkpoint=False,
               use_graph=False,
               always_agree=False,
               add_negative_edges_agr=False):
    assert not enable_summaries or (enable_summaries and
                                    summary_dir is not None)
    assert checkpoints_step is None or (checkpoints_step is not None and
                                        checkpoints_dir is not None)
    super(TrainerCotraining, self).__init__(
        model=None,
        abs_loss_chg_tol=abs_loss_chg_tol,
        rel_loss_chg_tol=rel_loss_chg_tol,
        loss_chg_iter_below_tol=loss_chg_iter_below_tol)
    self.model_cls = model_cls
    self.model_agr = model_agr
    self.max_num_iter_cotrain = max_num_iter_cotrain
    self.min_num_iter_cls = min_num_iter_cls
    self.max_num_iter_cls = max_num_iter_cls
    self.num_iter_after_best_val_cls = num_iter_after_best_val_cls
    self.min_num_iter_agr = min_num_iter_agr
    self.max_num_iter_agr = max_num_iter_agr
    self.num_iter_after_best_val_agr = num_iter_after_best_val_agr
    self.num_samples_to_label = num_samples_to_label
    self.min_confidence_new_label = min_confidence_new_label
    self.keep_label_proportions = keep_label_proportions
    self.num_warm_up_iter_agr = num_warm_up_iter_agr
    self.optimizer = optimizer
    self.gradient_clip = gradient_clip
    self.batch_size_agr = batch_size_agr
    self.batch_size_cls = batch_size_cls
    self.learning_rate_cls = learning_rate_cls
    self.learning_rate_agr = learning_rate_agr
    self.warm_start_cls = warm_start_cls
    self.warm_start_agr = warm_start_agr
    self.enable_summaries = enable_summaries
    self.enable_summaries_per_model = enable_summaries_per_model
    self.summary_step_cls = summary_step_cls
    self.summary_step_agr = summary_step_agr
    self.summary_dir = summary_dir
    self.logging_step_cls = logging_step_cls
    self.logging_step_agr = logging_step_agr
    self.eval_step_cls = eval_step_cls
    self.eval_step_agr = eval_step_agr
    self.checkpoints_step = checkpoints_step
    self.checkpoints_dir = checkpoints_dir
    self.data_dir = data_dir
    self.use_perfect_agr = use_perfect_agr
    self.use_perfect_cls = use_perfect_cls
    self.ratio_valid_agr = ratio_valid_agr
    self.max_samples_valid_agr = max_samples_valid_agr
    self.weight_decay_cls = weight_decay_cls
    self.weight_decay_schedule_cls = weight_decay_schedule_cls
    self.weight_decay_agr = weight_decay_agr
    self.weight_decay_schedule_agr = weight_decay_schedule_agr
    self.reg_weight_ll = reg_weight_ll
    self.reg_weight_lu = reg_weight_lu
    self.reg_weight_uu = reg_weight_uu
    self.num_pairs_reg = num_pairs_reg
    self.reg_weight_vat = reg_weight_vat
    self.use_ent_min = use_ent_min
    self.penalize_neg_agr = penalize_neg_agr
    self.use_l2_classif = use_l2_cls
    self.first_iter_original = first_iter_original
    self.inductive = inductive
    self.seed = seed
    self.eval_acc_pred_by_agr = eval_acc_pred_by_agr
    self.num_neighbors_pred_by_agr = num_neighbors_pred_by_agr
    self.lr_decay_rate_cls = lr_decay_rate_cls
    self.lr_decay_steps_cls = lr_decay_steps_cls
    self.lr_decay_rate_agr = lr_decay_rate_agr
    self.lr_decay_steps_agr = lr_decay_steps_agr
    self.load_from_checkpoint = load_from_checkpoint
    self.use_graph = use_graph
    self.always_agree = always_agree
    self.add_negative_edges_agr = add_negative_edges_agr