def _build_decoder()

in nmt/model.py [0:0]


  def _build_decoder(self, encoder_outputs, encoder_state, hparams):
    """Build and run a RNN decoder with a final projection layer.

    Args:
      encoder_outputs: The outputs of encoder for every time step.
      encoder_state: The final state of the encoder.
      hparams: The Hyperparameters configurations.

    Returns:
      A tuple of final logits and final decoder state:
        logits: size [time, batch_size, vocab_size] when time_major=True.
    """
    tgt_sos_id = tf.cast(self.tgt_vocab_table.lookup(tf.constant(hparams.sos)),
                         tf.int32)
    tgt_eos_id = tf.cast(self.tgt_vocab_table.lookup(tf.constant(hparams.eos)),
                         tf.int32)
    iterator = self.iterator

    # maximum_iteration: The maximum decoding steps.
    maximum_iterations = self._get_infer_maximum_iterations(
        hparams, iterator.source_sequence_length)

    ## Decoder.
    with tf.variable_scope("decoder") as decoder_scope:
      cell, decoder_initial_state = self._build_decoder_cell(
          hparams, encoder_outputs, encoder_state,
          iterator.source_sequence_length)

      # Optional ops depends on which mode we are in and which loss function we
      # are using.
      logits = tf.no_op()
      decoder_cell_outputs = None

      ## Train or eval
      if self.mode != tf.contrib.learn.ModeKeys.INFER:
        # decoder_emp_inp: [max_time, batch_size, num_units]
        target_input = iterator.target_input
        if self.time_major:
          target_input = tf.transpose(target_input)
        decoder_emb_inp = tf.nn.embedding_lookup(
            self.embedding_decoder, target_input)

        # Helper
        helper = tf.contrib.seq2seq.TrainingHelper(
            decoder_emb_inp, iterator.target_sequence_length,
            time_major=self.time_major)

        # Decoder
        my_decoder = tf.contrib.seq2seq.BasicDecoder(
            cell,
            helper,
            decoder_initial_state,)

        # Dynamic decoding
        outputs, final_context_state, _ = tf.contrib.seq2seq.dynamic_decode(
            my_decoder,
            output_time_major=self.time_major,
            swap_memory=True,
            scope=decoder_scope)

        sample_id = outputs.sample_id

        if self.num_sampled_softmax > 0:
          # Note: this is required when using sampled_softmax_loss.
          decoder_cell_outputs = outputs.rnn_output

        # Note: there's a subtle difference here between train and inference.
        # We could have set output_layer when create my_decoder
        #   and shared more code between train and inference.
        # We chose to apply the output_layer to all timesteps for speed:
        #   10% improvements for small models & 20% for larger ones.
        # If memory is a concern, we should apply output_layer per timestep.
        num_layers = self.num_decoder_layers
        num_gpus = self.num_gpus
        device_id = num_layers if num_layers < num_gpus else (num_layers - 1)
        # Colocate output layer with the last RNN cell if there is no extra GPU
        # available. Otherwise, put last layer on a separate GPU.
        with tf.device(model_helper.get_device_str(device_id, num_gpus)):
          logits = self.output_layer(outputs.rnn_output)

        if self.num_sampled_softmax > 0:
          logits = tf.no_op()  # unused when using sampled softmax loss.

      ## Inference
      else:
        infer_mode = hparams.infer_mode
        start_tokens = tf.fill([self.batch_size], tgt_sos_id)
        end_token = tgt_eos_id
        utils.print_out(
            "  decoder: infer_mode=%sbeam_width=%d, "
            "length_penalty=%f, coverage_penalty=%f"
            % (infer_mode, hparams.beam_width, hparams.length_penalty_weight,
               hparams.coverage_penalty_weight))

        if infer_mode == "beam_search":
          beam_width = hparams.beam_width
          length_penalty_weight = hparams.length_penalty_weight
          coverage_penalty_weight = hparams.coverage_penalty_weight

          my_decoder = tf.contrib.seq2seq.BeamSearchDecoder(
              cell=cell,
              embedding=self.embedding_decoder,
              start_tokens=start_tokens,
              end_token=end_token,
              initial_state=decoder_initial_state,
              beam_width=beam_width,
              output_layer=self.output_layer,
              length_penalty_weight=length_penalty_weight,
              coverage_penalty_weight=coverage_penalty_weight)
        elif infer_mode == "sample":
          # Helper
          sampling_temperature = hparams.sampling_temperature
          assert sampling_temperature > 0.0, (
              "sampling_temperature must greater than 0.0 when using sample"
              " decoder.")
          helper = tf.contrib.seq2seq.SampleEmbeddingHelper(
              self.embedding_decoder, start_tokens, end_token,
              softmax_temperature=sampling_temperature,
              seed=self.random_seed)
        elif infer_mode == "greedy":
          helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(
              self.embedding_decoder, start_tokens, end_token)
        else:
          raise ValueError("Unknown infer_mode '%s'", infer_mode)

        if infer_mode != "beam_search":
          my_decoder = tf.contrib.seq2seq.BasicDecoder(
              cell,
              helper,
              decoder_initial_state,
              output_layer=self.output_layer  # applied per timestep
          )

        # Dynamic decoding
        outputs, final_context_state, _ = tf.contrib.seq2seq.dynamic_decode(
            my_decoder,
            maximum_iterations=maximum_iterations,
            output_time_major=self.time_major,
            swap_memory=True,
            scope=decoder_scope)

        if infer_mode == "beam_search":
          sample_id = outputs.predicted_ids
        else:
          logits = outputs.rnn_output
          sample_id = outputs.sample_id

    return logits, decoder_cell_outputs, sample_id, final_context_state