in nmt/utils/standard_hparams_utils.py [0:0]
def create_standard_hparams():
return tf.contrib.training.HParams(
# Data
src="",
tgt="",
train_prefix="",
dev_prefix="",
test_prefix="",
vocab_prefix="",
embed_prefix="",
out_dir="",
# Networks
num_units=512,
num_encoder_layers=2,
num_decoder_layers=2,
dropout=0.2,
unit_type="lstm",
encoder_type="bi",
residual=False,
time_major=True,
num_embeddings_partitions=0,
num_enc_emb_partitions=0,
num_dec_emb_partitions=0,
# Attention mechanisms
attention="scaled_luong",
attention_architecture="standard",
output_attention=True,
pass_hidden_state=True,
# Train
optimizer="sgd",
batch_size=128,
init_op="uniform",
init_weight=0.1,
max_gradient_norm=5.0,
learning_rate=1.0,
warmup_steps=0,
warmup_scheme="t2t",
decay_scheme="luong234",
colocate_gradients_with_ops=True,
num_train_steps=12000,
num_sampled_softmax=0,
# Data constraints
num_buckets=5,
max_train=0,
src_max_len=50,
tgt_max_len=50,
src_max_len_infer=0,
tgt_max_len_infer=0,
# Data format
sos="<s>",
eos="</s>",
subword_option="",
use_char_encode=False,
check_special_token=True,
# Misc
forget_bias=1.0,
num_gpus=1,
epoch_step=0, # record where we were within an epoch.
steps_per_stats=100,
steps_per_external_eval=0,
share_vocab=False,
metrics=["bleu"],
log_device_placement=False,
random_seed=None,
# only enable beam search during inference when beam_width > 0.
beam_width=0,
length_penalty_weight=0.0,
coverage_penalty_weight=0.0,
override_loaded_hparams=True,
num_keep_ckpts=5,
avg_ckpts=False,
# For inference
inference_indices=None,
infer_batch_size=32,
sampling_temperature=0.0,
num_translations_per_input=1,
infer_mode="greedy",
# Language model
language_model=False,
)