in tutorials/movielens_tutorial.py [0:0]
def nn_model_fn(features, labels, mode):
"""NN adapted from github.com/hexiangnan/neural_collaborative_filtering."""
n_latent_factors_user = 10
n_latent_factors_movie = 10
n_latent_factors_mf = 5
user_input = tf.reshape(features['user'], [-1, 1])
item_input = tf.reshape(features['movie'], [-1, 1])
# number of users: 6040; number of movies: 3706
mf_embedding_user = tf.keras.layers.Embedding(
6040, n_latent_factors_mf, input_length=1)
mf_embedding_item = tf.keras.layers.Embedding(
3706, n_latent_factors_mf, input_length=1)
mlp_embedding_user = tf.keras.layers.Embedding(
6040, n_latent_factors_user, input_length=1)
mlp_embedding_item = tf.keras.layers.Embedding(
3706, n_latent_factors_movie, input_length=1)
# GMF part
# Flatten the embedding vector as latent features in GMF
mf_user_latent = tf.keras.layers.Flatten()(mf_embedding_user(user_input))
mf_item_latent = tf.keras.layers.Flatten()(mf_embedding_item(item_input))
# Element-wise multiply
mf_vector = tf.keras.layers.multiply([mf_user_latent, mf_item_latent])
# MLP part
# Flatten the embedding vector as latent features in MLP
mlp_user_latent = tf.keras.layers.Flatten()(mlp_embedding_user(user_input))
mlp_item_latent = tf.keras.layers.Flatten()(mlp_embedding_item(item_input))
# Concatenation of two latent features
mlp_vector = tf.keras.layers.concatenate([mlp_user_latent, mlp_item_latent])
predict_vector = tf.keras.layers.concatenate([mf_vector, mlp_vector])
logits = tf.keras.layers.Dense(5)(predict_vector)
# Calculate loss as a vector (to support microbatches in DP-SGD).
vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels, logits=logits)
# Define mean of loss across minibatch (for reporting through tf.Estimator).
scalar_loss = tf.reduce_mean(vector_loss)
# Configure the training op (for TRAIN mode).
if mode == tf.estimator.ModeKeys.TRAIN:
if FLAGS.dpsgd:
# Use DP version of GradientDescentOptimizer. Other optimizers are
# available in dp_optimizer. Most optimizers inheriting from
# tf.train.Optimizer should be wrappable in differentially private
# counterparts by calling dp_optimizer.optimizer_from_args().
optimizer = dp_optimizer.DPAdamGaussianOptimizer(
l2_norm_clip=FLAGS.l2_norm_clip,
noise_multiplier=FLAGS.noise_multiplier,
num_microbatches=microbatches,
learning_rate=FLAGS.learning_rate)
opt_loss = vector_loss
else:
optimizer = tf.compat.v1.train.AdamOptimizer(
learning_rate=FLAGS.learning_rate)
opt_loss = scalar_loss
global_step = tf.compat.v1.train.get_global_step()
train_op = optimizer.minimize(loss=opt_loss, global_step=global_step)
# In the following, we pass the mean of the loss (scalar_loss) rather than
# the vector_loss because tf.estimator requires a scalar loss. This is only
# used for evaluation and debugging by tf.estimator. The actual loss being
# minimized is opt_loss defined above and passed to optimizer.minimize().
return tf.estimator.EstimatorSpec(
mode=mode, loss=scalar_loss, train_op=train_op)
# Add evaluation metrics (for EVAL mode).
if mode == tf.estimator.ModeKeys.EVAL:
eval_metric_ops = {
'rmse':
tf.compat.v1.metrics.root_mean_squared_error(
labels=tf.cast(labels, tf.float32),
predictions=tf.tensordot(
a=tf.nn.softmax(logits, axis=1),
b=tf.constant(np.array([0, 1, 2, 3, 4]), dtype=tf.float32),
axes=1))
}
return tf.estimator.EstimatorSpec(
mode=mode, loss=scalar_loss, eval_metric_ops=eval_metric_ops)
return None