def nn_model_fn()

in tutorials/movielens_tutorial.py [0:0]


def nn_model_fn(features, labels, mode):
  """NN adapted from github.com/hexiangnan/neural_collaborative_filtering."""
  n_latent_factors_user = 10
  n_latent_factors_movie = 10
  n_latent_factors_mf = 5

  user_input = tf.reshape(features['user'], [-1, 1])
  item_input = tf.reshape(features['movie'], [-1, 1])

  # number of users: 6040; number of movies: 3706
  mf_embedding_user = tf.keras.layers.Embedding(
      6040, n_latent_factors_mf, input_length=1)
  mf_embedding_item = tf.keras.layers.Embedding(
      3706, n_latent_factors_mf, input_length=1)
  mlp_embedding_user = tf.keras.layers.Embedding(
      6040, n_latent_factors_user, input_length=1)
  mlp_embedding_item = tf.keras.layers.Embedding(
      3706, n_latent_factors_movie, input_length=1)

  # GMF part
  # Flatten the embedding vector as latent features in GMF
  mf_user_latent = tf.keras.layers.Flatten()(mf_embedding_user(user_input))
  mf_item_latent = tf.keras.layers.Flatten()(mf_embedding_item(item_input))
  # Element-wise multiply
  mf_vector = tf.keras.layers.multiply([mf_user_latent, mf_item_latent])

  # MLP part
  # Flatten the embedding vector as latent features in MLP
  mlp_user_latent = tf.keras.layers.Flatten()(mlp_embedding_user(user_input))
  mlp_item_latent = tf.keras.layers.Flatten()(mlp_embedding_item(item_input))
  # Concatenation of two latent features
  mlp_vector = tf.keras.layers.concatenate([mlp_user_latent, mlp_item_latent])

  predict_vector = tf.keras.layers.concatenate([mf_vector, mlp_vector])

  logits = tf.keras.layers.Dense(5)(predict_vector)

  # Calculate loss as a vector (to support microbatches in DP-SGD).
  vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
      labels=labels, logits=logits)
  # Define mean of loss across minibatch (for reporting through tf.Estimator).
  scalar_loss = tf.reduce_mean(vector_loss)

  # Configure the training op (for TRAIN mode).
  if mode == tf.estimator.ModeKeys.TRAIN:
    if FLAGS.dpsgd:
      # Use DP version of GradientDescentOptimizer. Other optimizers are
      # available in dp_optimizer. Most optimizers inheriting from
      # tf.train.Optimizer should be wrappable in differentially private
      # counterparts by calling dp_optimizer.optimizer_from_args().
      optimizer = dp_optimizer.DPAdamGaussianOptimizer(
          l2_norm_clip=FLAGS.l2_norm_clip,
          noise_multiplier=FLAGS.noise_multiplier,
          num_microbatches=microbatches,
          learning_rate=FLAGS.learning_rate)
      opt_loss = vector_loss
    else:
      optimizer = tf.compat.v1.train.AdamOptimizer(
          learning_rate=FLAGS.learning_rate)
      opt_loss = scalar_loss

    global_step = tf.compat.v1.train.get_global_step()
    train_op = optimizer.minimize(loss=opt_loss, global_step=global_step)
    # In the following, we pass the mean of the loss (scalar_loss) rather than
    # the vector_loss because tf.estimator requires a scalar loss. This is only
    # used for evaluation and debugging by tf.estimator. The actual loss being
    # minimized is opt_loss defined above and passed to optimizer.minimize().
    return tf.estimator.EstimatorSpec(
        mode=mode, loss=scalar_loss, train_op=train_op)

  # Add evaluation metrics (for EVAL mode).
  if mode == tf.estimator.ModeKeys.EVAL:
    eval_metric_ops = {
        'rmse':
            tf.compat.v1.metrics.root_mean_squared_error(
                labels=tf.cast(labels, tf.float32),
                predictions=tf.tensordot(
                    a=tf.nn.softmax(logits, axis=1),
                    b=tf.constant(np.array([0, 1, 2, 3, 4]), dtype=tf.float32),
                    axes=1))
    }
    return tf.estimator.EstimatorSpec(
        mode=mode, loss=scalar_loss, eval_metric_ops=eval_metric_ops)
  return None