in tutorials/mnist_dpsgd_tutorial_eager.py [0:0]
def main(_):
if FLAGS.dpsgd and FLAGS.batch_size % FLAGS.microbatches != 0:
raise ValueError('Number of microbatches should divide evenly batch_size')
# Fetch the mnist data
train, test = tf.keras.datasets.mnist.load_data()
train_images, train_labels = train
test_images, test_labels = test
# Create a dataset object and batch for the training data
dataset = tf.data.Dataset.from_tensor_slices(
(tf.cast(train_images[..., tf.newaxis] / 255,
tf.float32), tf.cast(train_labels, tf.int64)))
dataset = dataset.shuffle(1000).batch(FLAGS.batch_size)
# Create a dataset object and batch for the test data
eval_dataset = tf.data.Dataset.from_tensor_slices(
(tf.cast(test_images[..., tf.newaxis] / 255,
tf.float32), tf.cast(test_labels, tf.int64)))
eval_dataset = eval_dataset.batch(10000)
# Define the model using tf.keras.layers
mnist_model = tf.keras.Sequential([
tf.keras.layers.Conv2D(
16, 8, strides=2, padding='same', activation='relu'),
tf.keras.layers.MaxPool2D(2, 1),
tf.keras.layers.Conv2D(32, 4, strides=2, activation='relu'),
tf.keras.layers.MaxPool2D(2, 1),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(32, activation='relu'),
tf.keras.layers.Dense(10)
])
# Instantiate the optimizer
if FLAGS.dpsgd:
opt = DPGradientDescentGaussianOptimizer(
l2_norm_clip=FLAGS.l2_norm_clip,
noise_multiplier=FLAGS.noise_multiplier,
num_microbatches=FLAGS.microbatches,
learning_rate=FLAGS.learning_rate)
else:
opt = GradientDescentOptimizer(learning_rate=FLAGS.learning_rate)
# Training loop.
steps_per_epoch = 60000 // FLAGS.batch_size
for epoch in range(FLAGS.epochs):
# Train the model for one epoch.
for (_, (images, labels)) in enumerate(dataset.take(-1)):
with tf.GradientTape(persistent=True) as gradient_tape:
# This dummy call is needed to obtain the var list.
logits = mnist_model(images, training=True)
var_list = mnist_model.trainable_variables
# In Eager mode, the optimizer takes a function that returns the loss.
def loss_fn():
logits = mnist_model(images, training=True) # pylint: disable=undefined-loop-variable,cell-var-from-loop
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels, logits=logits) # pylint: disable=undefined-loop-variable,cell-var-from-loop
# If training without privacy, the loss is a scalar not a vector.
if not FLAGS.dpsgd:
loss = tf.reduce_mean(input_tensor=loss)
return loss
if FLAGS.dpsgd:
grads_and_vars = opt.compute_gradients(
loss_fn, var_list, gradient_tape=gradient_tape)
else:
grads_and_vars = opt.compute_gradients(loss_fn, var_list)
opt.apply_gradients(grads_and_vars)
# Evaluate the model and print results
for (_, (images, labels)) in enumerate(eval_dataset.take(-1)):
logits = mnist_model(images, training=False)
correct_preds = tf.equal(tf.argmax(input=logits, axis=1), labels)
test_accuracy = np.mean(correct_preds.numpy())
print('Test accuracy after epoch %d is: %.3f' % (epoch, test_accuracy))
# Compute the privacy budget expended so far.
if FLAGS.dpsgd:
eps = compute_epsilon((epoch + 1) * steps_per_epoch)
print('For delta=1e-5, the current epsilon is: %.2f' % eps)
else:
print('Trained with vanilla non-private SGD optimizer')