def _parameter_control_dependencies()

in tensorflow_probability/python/bijectors/pad.py [0:0]


  def _parameter_control_dependencies(self, is_init):
    assertions = []

    axis = None
    paddings = None

    if is_init != tensor_util.is_ref(self.axis):
      # First we check the shape of the axis argument.
      msg = 'Argument `axis` must be scalar or vector.'
      if tensorshape_util.rank(self.axis.shape) is not None:
        if tensorshape_util.rank(self.axis.shape) > 1:
          raise ValueError(msg)
      elif self.validate_args:
        if axis is None: axis = tf.convert_to_tensor(self.axis)
        assertions.append(assert_util.assert_rank_at_most(
            axis, 1, message=msg))
      # Next we check the values of the axis argument.
      axis_ = tf.get_static_value(self.axis)
      msg = 'Argument `axis` must be negative.'
      if axis_ is not None:
        if np.any(axis_ > -1):
          raise ValueError(msg)
      elif self.validate_args:
        if axis is None: axis = tf.convert_to_tensor(self.axis)
        assertions.append(assert_util.assert_less(axis, 0, message=msg))
      msg = 'Argument `axis` elements must be unique.'
      if axis_ is not None:
        if len(np.array(axis_).reshape(-1)) != len(np.unique(axis_)):
          raise ValueError(msg)
      elif self.validate_args:
        if axis is None: axis = tf.convert_to_tensor(self.axis)
        assertions.append(assert_util.assert_equal(
            ps.size0(axis),
            ps.size0(ps.setdiff1d(axis)),
            message=msg))

    if is_init != tensor_util.is_ref(self.paddings):
      # First we check the shape of the paddings argument.
      msg = 'Argument `paddings` must be a vector of pairs.'
      if tensorshape_util.is_fully_defined(self.paddings.shape):
        shape = np.int32(self.paddings.shape)
        if len(shape) != 2 or shape[0] < 1 or shape[1] != 2:
          raise ValueError(msg)
      elif self.validate_args:
        if paddings is None: paddings = tf.convert_to_tensor(self.paddings)
        with tf.control_dependencies([
            assert_util.assert_equal(tf.rank(paddings), 2, message=msg)]):
          shape = tf.shape(paddings)
          assertions.extend([
              assert_util.assert_greater(shape[0], 0, message=msg),
              assert_util.assert_equal(shape[1], 2, message=msg),
          ])
      # Next we check the values of the paddings argument.
      paddings_ = tf.get_static_value(self.paddings)
      msg = 'Argument `paddings` must be non-negative.'
      if paddings_ is not None:
        if np.any(paddings_ < 0):
          raise ValueError(msg)
      elif self.validate_args:
        if paddings is None: paddings = tf.convert_to_tensor(self.paddings)
        assertions.append(assert_util.assert_greater(
            paddings, -1, message=msg))

    if is_init != (tensor_util.is_ref(self.axis) and
                   tensor_util.is_ref(self.paddings)):
      axis_ = tf.get_static_value(self.axis)
      if axis_ is None and axis is None:
        axis = tf.convert_to_tensor(self.axis)
      len_axis = ps.size0(ps.reshape(
          axis if axis_ is None else axis_, shape=-1))

      paddings_ = tf.get_static_value(self.paddings)
      if paddings_ is None and paddings is None:
        paddings = tf.convert_to_tensor(self.paddings)
      len_paddings = ps.size0(
          paddings if paddings_ is None else paddings_)

      msg = ('Arguments `axis` and `paddings` must have the same number '
             'of elements.')
      if (ps.is_numpy(len_axis) and
          ps.is_numpy(len_paddings)):
        if len_axis != len_paddings:
          raise ValueError(msg + ' Saw: {}, {}.'.format(
              self.axis, self.paddings))
      elif self.validate_args:
        assertions.append(assert_util.assert_equal(
            len_axis, len_paddings, message=msg))

    return assertions