def tfi_chain()

in tensorflow_quantum/datasets/spin_system.py [0:0]


def tfi_chain(qubits, boundary_condition="closed", data_dir=None):
    """1D Transverse field Ising-model quantum data set.

    $$
    H = - \sum_{i} \sigma_i^z \sigma_{i+1}^z - g\sigma_i^x
    $$

    Contains 81 circuit parameterizations corresponding to
    the ground states of the 1D TFI chain for g in [0.2,1.8].
    This dataset contains 81 datapoints. Each datapoint is represented by a
    circuit (`cirq.Circuit`), a label (Python `float`) a Hamiltonian
    (`cirq.PauliSum`) and some additional metadata. Each Hamiltonian in a
    datapoint is a 1D TFI chain with boundary condition `boundary_condition` on
    `qubits` whos order parameter dictates the value of label. The circuit in a
    datapoint prepares (an approximation to) the ground state of the Hamiltonian
    in the datapoint.

    Example usage:

    >>> qbs = cirq.GridQubit.rect(4, 1)
    >>> circuits, labels, pauli_sums, addinfo  =
    ...     tfq.datasets.tfi_chain(qbs, "closed")

    You can print the available order parameters

    >>> [info.g for info in addinfo]
    [0.20, 0.22, 0.24, ... ,1.76, 1.78, 1.8]

    and the circuit corresponding to the ground state for a certain order
    parameter

    >>> print(circuits[10])
                                                          ┌─────── ...
    (0, 0): ───H───ZZ──────────────────────────────────ZZ───────── ...
                   │                                   │
    (1, 0): ───H───ZZ^0.761───ZZ─────────X^0.641───────┼────────── ...
                              │                        │
    (2, 0): ───H──────────────ZZ^0.761───ZZ────────────┼────────── ...
                                         │             │
    (3, 0): ───H─────────────────────────ZZ^0.761──────ZZ^0.761─── ...
                                                      └─────────── ...

    The labels indicate the phase of the system
    >>> labels[10]
    0

    Additionally, you can obtain the `cirq.PauliSum` representation of the
    Hamiltonian

    >>> print(pauli_sums[10])
    -1.000*Z((0, 0))*Z((1, 0))-1.000*Z((1, 0))*Z((2, 0))-1.000*Z((2, 0))*
    Z((3, 0))-1.000*Z((0, 0))*Z((3, 0)) ...
    -0.400*X((2, 0))-0.400*X((3, 0))

    The fourth output, `addinfo`, contains additional information
    about each instance of the system (see `tfq.datasets.spin_system.SpinSystem`
    ).

    For instance, you can print the ground state obtained from
    exact diagonalization

    >>> addinfo[10].gs
    [[-0.38852974+0.57092165j]
     [-0.04107317+0.06035461j]
                ...
     [-0.04107317+0.06035461j]
     [-0.38852974+0.57092165j]]

    with corresponding ground state energy

    >>> addinfo[10].gs_energy
    -4.169142950406478

    You can also inspect the parameters

    >>> addinfo[10].params
    {"theta_0": 0.7614564630036476, "theta_1": 0.6774991338794768,
    "theta_2": 0.6407093304791429, "theta_3": 0.7335369771742435}

    and change them to experiment with different parameter values by using
    the unresolved variational circuit returned by tfichain
    >>> new_params = {}
    ... for symbol_name, value in addinfo[10].params.items():
    ...    new_params[symbol_name] = 0.5 * value
    >>> new_params
    {"theta_0": 0.3807282315018238, "theta_1": 0.3387495669397384,
    "theta_2": 0.32035466523957146, "theta_3": 0.36676848858712174}
    >>> new_circuit = cirq.resolve_parameters(addinfo[10].var_circuit,
    ... new_params)
    >>> print(new_circuit)
                                                           ┌─────── ...
    (0, 0): ───H───ZZ──────────────────────────────────ZZ───────── ...
                   │                                   │
    (1, 0): ───H───ZZ^0.761───ZZ─────────X^0.32────────┼────────── ...
                              │                        │
    (2, 0): ───H──────────────ZZ^0.761───ZZ────────────┼────────── ...
                                         │             │
    (3, 0): ───H─────────────────────────ZZ^0.761──────ZZ^0.761─── ...
                                                      └─────────── ...

    Args:
        qubits: Python `lst` of `cirq.GridQubit`s. Supported number of spins
            are [4, 8, 12, 16].
        boundary_condition: Python `str` indicating the boundary condition
            of the chain. Supported boundary conditions are ["closed"].
        data_dir: Optional Python `str` location where to store the data on
            disk. Defaults to `/tmp/.keras`.
    Returns:
        A Python `lst` cirq.Circuit of depth len(qubits) / 2 with resolved
            parameters.
        A Python `lst` of labels, 0, for the ferromagnetic phase (`g<1`), 1 for
            the critical point (`g==1`) and 2 for the paramagnetic phase
            (`g>1`).
        A Python `lst` of `cirq.PauliSum`s.
        A Python `lst` of `namedtuple` instances containing the following
            fields:
        - `g`: Numpy `float` order parameter.
        - `gs`: Complex `np.ndarray` ground state wave function from
            exact diagonalization.
        - `gs_energy`: Numpy `float` ground state energy from exact
            diagonalization.
        - `res_energy`: Python `float` residual between the circuit energy
            and the exact energy from exact diagonalization.
        - `fidelity`: Python `float` overlap between the circuit state
            and the exact ground state from exact diagonalization.
        - `params`: Dict with Python `str` keys and Numpy`float` values.
            Contains $M \times P $ parameters. Here $M$ is the number of
            parameters per circuit layer and $P$ the circuit depth.
        - `var_circuit`: Variational `cirq.Circuit` quantum circuit with
            unresolved Sympy parameters.
    """

    supported_n = [4, 8, 12, 16]
    supported_bc = ["closed"]
    if any(isinstance(q, list) for q in qubits):
        raise TypeError("qubits must be a one-dimensional list")

    if not all(isinstance(q, cirq.GridQubit) for q in qubits):
        raise TypeError("qubits must be a list of cirq.GridQubit objects.")

    nspins = len(qubits)
    depth = nspins // 2
    if nspins not in supported_n:
        raise ValueError("Supported number of spins are {}, received {}".format(
            supported_n, nspins))

    if boundary_condition not in supported_bc:
        raise ValueError(
            "Supported boundary conditions are {}, received {}".format(
                supported_bc, boundary_condition))

    data_path = _download_spin_data('TFI_chain', boundary_condition, nspins,
                                    data_dir)

    name_generator = unique_name()

    # 2 * N/2 parameters.
    symbol_names = [next(name_generator) for _ in range(nspins)]
    symbols = [sympy.Symbol(name) for name in symbol_names]

    # Define the circuit.
    circuit = cirq.Circuit(cirq.H.on_each(qubits))

    for d in range(depth):
        circuit.append(
            cirq.ZZ(q1, q2)**(symbols[d]) for q1, q2 in zip(qubits, qubits[1:]))
        if boundary_condition == "closed":
            circuit.append(cirq.ZZ(qubits[nspins - 1], qubits[0])**(symbols[d]))
        circuit.append(cirq.X(q1)**(symbols[d + depth]) for q1 in qubits)

    # Initiate lists.
    resolved_circuits = []
    hamiltonians = []
    order_parameters = []
    additional_info = []
    labels = []
    # Load the data and append to the lists.
    for i, directory in enumerate(x for x in os.listdir(data_path)):
        # The folders are named according to the order value data they contain.
        g = float(directory)
        with open(os.path.join(data_path, directory, "stats.txt"), "r") as file:
            lines = file.readlines()
            res_e = float(lines[0].split("=")[1].strip("\n"))
            fidelity = float(lines[2].split("=")[1].strip("\n"))
        order_parameters.append(g)
        params = np.load(os.path.join(data_path, directory, "params.npy")) \
                 / np.pi
        # Parameters are stored as np.float32, but cirq expects np.float64
        # See https://github.com/quantumlib/Cirq/issues/3359
        params = params.astype(np.float)
        additional_info.append(
            SpinSystemInfo(g=g,
                           gs=np.load(
                               os.path.join(data_path, directory,
                                            "groundstate.npy"))[:, 0],
                           gs_energy=np.load(
                               os.path.join(data_path, directory,
                                            "energy.npy"))[0],
                           res_energy=res_e,
                           fidelity=fidelity,
                           params=dict(zip(symbol_names, params.flatten())),
                           var_circuit=circuit))

        # Resolve the circuit parameters.
        resolved_circuit = cirq.resolve_parameters(circuit,
                                                   additional_info[i].params)
        resolved_circuits.append(resolved_circuit)

        # Make the PauliSum.
        paulisum = sum(
            -cirq.Z(q1) * cirq.Z(q2) for q1, q2 in zip(qubits, qubits[1:]))
        if boundary_condition == "closed":
            paulisum += -cirq.Z(qubits[0]) * cirq.Z(qubits[-1])
        paulisum += -order_parameters[i] * sum(cirq.X(q) for q in qubits)
        hamiltonians.append(paulisum)

        # Set labels for the different phases.
        if order_parameters[i] < 1.0:
            labels.append(0)
        elif order_parameters[i] == 1.0:
            labels.append(1)
        else:
            labels.append(2)
    # Make sure that the data is ordered from g=0.2 to g=1.8.
    _, resolved_circuits, labels, hamiltonians, additional_info = zip(*sorted(
        zip(order_parameters, resolved_circuits, labels, hamiltonians,
            additional_info)))

    return resolved_circuits, labels, hamiltonians, additional_info