def decode_from_file()

in tensor2tensor/utils/decoding.py [0:0]


def decode_from_file(estimator,
                     filename,
                     hparams,
                     decode_hp,
                     decode_to_file=None,
                     checkpoint_path=None):
  """Compute predictions on entries in filename and write them out."""
  if not decode_hp.batch_size:
    decode_hp.batch_size = 32
    tf.logging.info(
        "decode_hp.batch_size not specified; default=%d" % decode_hp.batch_size)

  # Inputs vocabulary is set to targets if there are no inputs in the problem,
  # e.g., for language models where the inputs are just a prefix of targets.
  p_hp = hparams.problem_hparams
  has_input = "inputs" in p_hp.vocabulary
  inputs_vocab_key = "inputs" if has_input else "targets"
  inputs_vocab = p_hp.vocabulary[inputs_vocab_key]
  targets_vocab = p_hp.vocabulary["targets"]
  problem_name = FLAGS.problem
  filename = _add_shard_to_filename(filename, decode_hp)
  tf.logging.info("Performing decoding from file (%s)." % filename)
  if has_input:
    sorted_inputs, sorted_keys = _get_sorted_inputs(
        filename, decode_hp.delimiter)
  else:
    sorted_inputs = _get_language_modeling_inputs(
        filename, decode_hp.delimiter, repeat=decode_hp.num_decodes)
    sorted_keys = range(len(sorted_inputs))
  num_sentences = len(sorted_inputs)
  num_decode_batches = (num_sentences - 1) // decode_hp.batch_size + 1

  if estimator.config.use_tpu:
    length = getattr(hparams, "length", 0) or hparams.max_length
    batch_ids = []
    for line in sorted_inputs:
      if has_input:
        ids = inputs_vocab.encode(line.strip()) + [1]
      else:
        ids = targets_vocab.encode(line)
      if len(ids) < length:
        ids.extend([0] * (length - len(ids)))
      else:
        ids = ids[:length]
      batch_ids.append(ids)
    np_ids = np.array(batch_ids, dtype=np.int32)
    def input_fn(params):
      batch_size = params["batch_size"]
      dataset = tf.data.Dataset.from_tensor_slices({"inputs": np_ids})
      dataset = dataset.map(
          lambda ex: {"inputs": tf.reshape(ex["inputs"], (length, 1, 1))})
      dataset = dataset.batch(batch_size)
      return dataset
  else:
    def input_fn():
      input_gen = _decode_batch_input_fn(
          num_decode_batches, sorted_inputs,
          inputs_vocab, decode_hp.batch_size,
          decode_hp.max_input_size,
          task_id=decode_hp.multiproblem_task_id, has_input=has_input)
      gen_fn = make_input_fn_from_generator(input_gen)
      example = gen_fn()
      return _decode_input_tensor_to_features_dict(example, hparams, decode_hp)
  decodes = []
  result_iter = estimator.predict(input_fn, checkpoint_path=checkpoint_path)

  start_time = time.time()
  total_time_per_step = 0
  total_cnt = 0

  def timer(gen):
    while True:
      try:
        start_time = time.time()
        item = next(gen)
        elapsed_time = time.time() - start_time
        yield elapsed_time, item
      except StopIteration:
        break

  for elapsed_time, result in timer(result_iter):
    if decode_hp.return_beams:
      beam_decodes = []
      beam_scores = []
      output_beams = np.split(result["outputs"], decode_hp.beam_size, axis=0)
      scores = None
      if "scores" in result:
        if np.isscalar(result["scores"]):
          result["scores"] = result["scores"].reshape(1)
        scores = np.split(result["scores"], decode_hp.beam_size, axis=0)
      for k, beam in enumerate(output_beams):
        tf.logging.info("BEAM %d:" % k)
        score = scores and scores[k]
        _, decoded_outputs, _ = log_decode_results(
            result["inputs"],
            beam,
            problem_name,
            None,
            inputs_vocab,
            targets_vocab,
            log_results=decode_hp.log_results,
            skip_eos_postprocess=decode_hp.skip_eos_postprocess)
        beam_decodes.append(decoded_outputs)
        if decode_hp.write_beam_scores:
          beam_scores.append(score)
      if decode_hp.write_beam_scores:
        decodes.append("\t".join([
            "\t".join([d, "%.2f" % s])
            for d, s in zip(beam_decodes, beam_scores)
        ]))
      else:
        decodes.append("\t".join(beam_decodes))
    else:
      _, decoded_outputs, _ = log_decode_results(
          result["inputs"],
          result["outputs"],
          problem_name,
          None,
          inputs_vocab,
          targets_vocab,
          log_results=decode_hp.log_results,
          skip_eos_postprocess=decode_hp.skip_eos_postprocess)
      decodes.append(decoded_outputs)
    total_time_per_step += elapsed_time
    total_cnt += result["outputs"].shape[-1]
  duration = time.time() - start_time
  tf.logging.info("Elapsed Time: %5.5f" % duration)
  tf.logging.info("Averaged Single Token Generation Time: %5.7f "
                  "(time %5.7f count %d)" %
                  (total_time_per_step / total_cnt,
                   total_time_per_step, total_cnt))
  if decode_hp.batch_size == 1:
    tf.logging.info("Inference time %.4f seconds "
                    "(Latency = %.4f ms/setences)" %
                    (duration, 1000.0*duration/num_sentences))
  else:
    tf.logging.info("Inference time %.4f seconds "
                    "(Throughput = %.4f sentences/second)" %
                    (duration, num_sentences/duration))

  # If decode_to_file was provided use it as the output filename without change
  # (except for adding shard_id if using more shards for decoding).
  # Otherwise, use the input filename plus model, hp, problem, beam, alpha.
  decode_filename = decode_to_file if decode_to_file else filename
  if not decode_to_file:
    decode_filename = _decode_filename(decode_filename, problem_name, decode_hp)
  else:
    decode_filename = _add_shard_to_filename(decode_filename, decode_hp)
  tf.logging.info("Writing decodes into %s" % decode_filename)
  outfile = tf.gfile.Open(decode_filename, "w")
  for index in range(len(sorted_inputs)):
    outfile.write("%s%s" % (decodes[sorted_keys[index]], decode_hp.delimiter))
  outfile.flush()
  outfile.close()

  output_dir = os.path.join(estimator.model_dir, "decode")
  tf.gfile.MakeDirs(output_dir)

  run_postdecode_hooks(DecodeHookArgs(
      estimator=estimator,
      problem=hparams.problem,
      output_dirs=[output_dir],
      hparams=hparams,
      decode_hparams=decode_hp,
      predictions=list(result_iter)
  ), None)