tensorflow_text/python/ops/fast_wordpiece_tokenizer.py [211:230]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      tokens = ragged_tensor.convert_to_tensor_or_ragged_tensor(input)
      rank = tokens.shape.ndims
      if rank is None:
        raise ValueError('input must have a known rank.')

      if rank == 0:
        wordpieces, starts, ends = self.tokenize_with_offsets(
            array_ops.stack([tokens]))
        return wordpieces.values, starts.values, ends.values

      elif rank > 1:
        if not ragged_tensor.is_ragged(tokens):
          tokens = ragged_tensor.RaggedTensor.from_tensor(
              tokens, ragged_rank=rank - 1)
        wordpieces, starts, ends = self.tokenize_with_offsets(
            tokens.flat_values)
        wordpieces = wordpieces.with_row_splits_dtype(tokens.row_splits.dtype)
        starts = starts.with_row_splits_dtype(tokens.row_splits.dtype)
        ends = ends.with_row_splits_dtype(tokens.row_splits.dtype)
        return (tokens.with_flat_values(wordpieces),
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



tensorflow_text/python/ops/wordpiece_tokenizer.py [266:285]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      tokens = ragged_tensor.convert_to_tensor_or_ragged_tensor(input)
      rank = tokens.shape.ndims
      if rank is None:
        raise ValueError('input must have a known rank.')

      if rank == 0:
        wordpieces, starts, ends = self.tokenize_with_offsets(
            array_ops.stack([tokens]))
        return wordpieces.values, starts.values, ends.values

      elif rank > 1:
        if not ragged_tensor.is_ragged(tokens):
          tokens = ragged_tensor.RaggedTensor.from_tensor(
              tokens, ragged_rank=rank - 1)
        wordpieces, starts, ends = self.tokenize_with_offsets(
            tokens.flat_values)
        wordpieces = wordpieces.with_row_splits_dtype(tokens.row_splits.dtype)
        starts = starts.with_row_splits_dtype(tokens.row_splits.dtype)
        ends = ends.with_row_splits_dtype(tokens.row_splits.dtype)
        return (tokens.with_flat_values(wordpieces),
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



