in src/tensorflow/lite/micro/kernels/svdf_common.cpp [362:502]
TfLiteStatus PrepareSvdf(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->builtin_data != nullptr);
const auto* params = static_cast<const TfLiteSVDFParams*>(node->builtin_data);
// Validate Tensor Inputs (dtype depends on quantization):
// [0] = Input, {2, batch_size, input_size}
// [1] = Weights Feature, {2, num_filters, input_size}
// [2] = Weights Time, {2, num_filters, memory_size}
// [3] = Bias (optional), {1, num_units}
// [4] = Activation State (variable),
// {2, batch_size, memory_size * num_filters}
const TfLiteTensor* input = GetInput(context, node, kSvdfInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
const TfLiteTensor* weights_feature =
GetInput(context, node, kSvdfWeightsFeatureTensor);
TF_LITE_ENSURE(context, weights_feature != nullptr);
const TfLiteTensor* weights_time =
GetInput(context, node, kSvdfWeightsTimeTensor);
TF_LITE_ENSURE(context, weights_time != nullptr);
const TfLiteTensor* bias =
GetOptionalInputTensor(context, node, kSvdfBiasTensor);
const TfLiteTensor* activation_state =
GetInput(context, node, kSvdfInputActivationStateTensor);
TF_LITE_ENSURE(context, activation_state != nullptr);
// Define input constants based on input tensor definition above:
const int rank = params->rank;
const int input_size = input->dims->data[1];
const int batch_size = input->dims->data[0];
const int num_filters = weights_feature->dims->data[0];
TF_LITE_ENSURE_EQ(context, num_filters % rank, 0);
const int num_units = num_filters / rank;
const int memory_size = weights_time->dims->data[1];
// Validate Input Tensor:
TF_LITE_ENSURE(context,
input->type == kTfLiteFloat32 || input->type == kTfLiteInt8);
TF_LITE_ENSURE_EQ(context, NumDimensions(input), 2);
// Validate Tensor Output:
// [0] = float/int8_t, {2, batch_size, num_units}
TF_LITE_ENSURE_EQ(context, node->outputs->size, 1);
TfLiteTensor* output = GetOutput(context, node, kSvdfOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
TF_LITE_ENSURE_EQ(context, NumDimensions(output), 2);
TF_LITE_ENSURE_EQ(context, output->dims->data[0], batch_size);
TF_LITE_ENSURE_EQ(context, output->dims->data[1], num_units);
// Validate Weights Feature Input Tensor:
TF_LITE_ENSURE_EQ(context, NumDimensions(weights_feature), 2);
TF_LITE_ENSURE_EQ(context, weights_feature->dims->data[1], input_size);
// Validate Weights Time Input Tensor:
TF_LITE_ENSURE_EQ(context, NumDimensions(weights_time), 2);
TF_LITE_ENSURE_EQ(context, weights_time->dims->data[0], num_filters);
TF_LITE_ENSURE_EQ(context, weights_time->dims->data[1], memory_size);
// Validate Optional Bias Input Tensor:
if (bias != nullptr) {
TF_LITE_ENSURE_EQ(context, bias->dims->data[0], num_units);
}
// Validate Activation State Input Tensor:
TF_LITE_ENSURE_EQ(context, NumDimensions(activation_state), 2);
TF_LITE_ENSURE_EQ(context, activation_state->dims->data[0], batch_size);
TF_LITE_ENSURE_EQ(context, activation_state->dims->data[1],
memory_size * num_filters);
// Since is_variable is not part of TFLiteEvalTensor, check is_variable here.
TF_LITE_ENSURE_EQ(context, activation_state->is_variable, true);
TF_LITE_ENSURE_EQ(context, node->inputs->size, 5);
TFLITE_DCHECK(node->user_data != nullptr);
OpDataSvdf* data = static_cast<OpDataSvdf*>(node->user_data);
if (input->type == kTfLiteInt8) {
TF_LITE_ENSURE_EQ(context, weights_feature->type, kTfLiteInt8);
TF_LITE_ENSURE(context, (weights_time->type == kTfLiteInt16) ||
(weights_time->type == kTfLiteInt8));
TF_LITE_ENSURE(context, (activation_state->type == kTfLiteInt16) ||
(activation_state->type == kTfLiteInt8));
if (bias != nullptr) {
TF_LITE_ENSURE_EQ(context, bias->type, kTfLiteInt32);
}
TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteInt8);
const double effective_scale_1 = static_cast<double>(
input->params.scale * weights_feature->params.scale /
activation_state->params.scale);
const double effective_scale_2 =
static_cast<double>(activation_state->params.scale *
weights_time->params.scale / output->params.scale);
// TODO(b/162018098): Use TF_LITE_ENSURE_NEAR when it is ready.
TF_LITE_ENSURE(
context,
std::abs(static_cast<double>(bias->params.scale) -
static_cast<double>(activation_state->params.scale *
weights_time->params.scale)) < 1e-5);
QuantizeMultiplier(effective_scale_1, &(data->effective_scale_1_a),
&(data->effective_scale_1_b));
QuantizeMultiplier(effective_scale_2, &(data->effective_scale_2_a),
&(data->effective_scale_2_b));
data->input_zero_point = input->params.zero_point;
data->output_zero_point = output->params.zero_point;
data->activation_state_zero_point = activation_state->params.zero_point;
TFLITE_DCHECK(context->RequestScratchBufferInArena != nullptr);
const TfLiteStatus scratch_status = context->RequestScratchBufferInArena(
context, batch_size * num_filters * sizeof(int32_t),
&(data->scratch_tensor_index));
TF_LITE_ENSURE_OK(context, scratch_status);
const TfLiteStatus scratch_output_status =
context->RequestScratchBufferInArena(
context, batch_size * num_units * sizeof(int32_t),
&(data->scratch_output_tensor_index));
TF_LITE_ENSURE_OK(context, scratch_output_status);
} else {
TF_LITE_ENSURE_EQ(context, weights_feature->type, kTfLiteFloat32);
TF_LITE_ENSURE_EQ(context, weights_time->type, kTfLiteFloat32);
TF_LITE_ENSURE_EQ(context, activation_state->type, kTfLiteFloat32);
if (bias != nullptr) {
TF_LITE_ENSURE_EQ(context, bias->type, kTfLiteFloat32);
}
TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteFloat32);
TFLITE_DCHECK(context->RequestScratchBufferInArena != nullptr);
const TfLiteStatus scratch_status = context->RequestScratchBufferInArena(
context, batch_size * num_filters * sizeof(float),
&(data->scratch_tensor_index));
TF_LITE_ENSURE_OK(context, scratch_status);
}
return kTfLiteOk;
}