in src/tensorflow/lite/micro/kernels/quantize_common.cpp [83:205]
TfLiteStatus EvalQuantizeReference(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->user_data != nullptr);
auto* data = static_cast<OpDataQuantizeReference*>(node->user_data);
const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0);
TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0);
if (input->type == kTfLiteFloat32) {
switch (output->type) {
case kTfLiteInt8:
reference_ops::AffineQuantize(
data->quantization_params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output));
break;
case kTfLiteInt16:
reference_ops::AffineQuantize(
data->quantization_params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int16_t>(output));
return kTfLiteOk;
default:
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
TfLiteTypeGetName(input->type),
TfLiteTypeGetName(output->type));
return kTfLiteError;
}
} else if (input->type == kTfLiteInt32) {
size_t size = ElementCount(*input->dims);
switch (output->type) {
case kTfLiteInt8:
reference_ops::Requantize(
tflite::micro::GetTensorData<int32_t>(input), size,
data->requantize_output_multiplier, data->requantize_output_shift,
data->input_zero_point, data->quantization_params.zero_point,
tflite::micro::GetTensorData<int8_t>(output));
break;
case kTfLiteInt16:
reference_ops::Requantize(
tflite::micro::GetTensorData<int32_t>(input), size,
data->requantize_output_multiplier, data->requantize_output_shift,
data->input_zero_point, data->quantization_params.zero_point,
tflite::micro::GetTensorData<int16_t>(output));
break;
default:
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
TfLiteTypeGetName(input->type),
TfLiteTypeGetName(output->type));
return kTfLiteError;
}
} else if (input->type == kTfLiteInt16) {
size_t size = ElementCount(*input->dims);
switch (output->type) {
case kTfLiteInt8:
reference_ops::Requantize(
tflite::micro::GetTensorData<int16_t>(input), size,
data->requantize_output_multiplier, data->requantize_output_shift,
data->input_zero_point, data->quantization_params.zero_point,
tflite::micro::GetTensorData<int8_t>(output));
break;
case kTfLiteInt16:
reference_ops::Requantize(
tflite::micro::GetTensorData<int16_t>(input), size,
data->requantize_output_multiplier, data->requantize_output_shift,
data->input_zero_point, data->quantization_params.zero_point,
tflite::micro::GetTensorData<int16_t>(output));
return kTfLiteOk;
case kTfLiteInt32:
reference_ops::Requantize(
tflite::micro::GetTensorData<int16_t>(input), size,
data->requantize_output_multiplier, data->requantize_output_shift,
data->input_zero_point, data->quantization_params.zero_point,
tflite::micro::GetTensorData<int32_t>(output));
return kTfLiteOk;
default:
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
TfLiteTypeGetName(input->type),
TfLiteTypeGetName(output->type));
return kTfLiteError;
}
} else if (input->type == kTfLiteInt8) {
// Int8 to Int8 requantization, required if the input and output tensors
// have different scales and/or zero points.
size_t size = ElementCount(*input->dims);
switch (output->type) {
case kTfLiteInt8:
reference_ops::Requantize(
tflite::micro::GetTensorData<int8_t>(input), size,
data->requantize_output_multiplier, data->requantize_output_shift,
data->input_zero_point, data->quantization_params.zero_point,
tflite::micro::GetTensorData<int8_t>(output));
break;
case kTfLiteInt16:
reference_ops::Requantize(
tflite::micro::GetTensorData<int8_t>(input), size,
data->requantize_output_multiplier, data->requantize_output_shift,
data->input_zero_point, data->quantization_params.zero_point,
tflite::micro::GetTensorData<int16_t>(output));
break;
case kTfLiteInt32:
reference_ops::Requantize(
tflite::micro::GetTensorData<int8_t>(input), size,
data->requantize_output_multiplier, data->requantize_output_shift,
data->input_zero_point, data->quantization_params.zero_point,
tflite::micro::GetTensorData<int32_t>(output));
break;
default:
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
TfLiteTypeGetName(input->type),
TfLiteTypeGetName(output->type));
return kTfLiteError;
}
} else {
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
TfLiteTypeGetName(input->type),
TfLiteTypeGetName(output->type));
return kTfLiteError;
}
return kTfLiteOk;
}