in tfx_addons/sampling/example/sampler_utils.py [0:0]
def _eval_input_receiver_fn(tf_transform_output, schema):
"""Build everything needed for the tf-model-analysis to run the model.
Args:
tf_transform_output: A TFTransformOutput.
schema: the schema of the input data.
Returns:
EvalInputReceiver function, which contains:
- Tensorflow graph which parses raw untransformed features, applies the
tf-transform preprocessing operators.
- Set of raw, untransformed features.
- Label against which predictions will be compared.
"""
# Notice that the inputs are raw features, not transformed features here.
raw_feature_spec = _get_raw_feature_spec(schema)
serialized_tf_example = tf.compat.v1.placeholder(dtype=tf.string,
shape=[None],
name='input_example_tensor')
# Add a parse_example operator to the tensorflow graph, which will parse
# raw, untransformed, tf examples.
features = tf.io.parse_example(serialized_tf_example, raw_feature_spec)
# Now that we have our raw examples, process them through the tf-transform
# function computed during the preprocessing step.
transformed_features = tf_transform_output.transform_raw_features(features)
# The key name MUST be 'examples'.
receiver_tensors = {'examples': serialized_tf_example}
# NOTE: Model is driven by transformed features (since training works on the
# materialized output of TFT, but slicing will happen on raw features.
features.update(transformed_features)
return tfma.export.EvalInputReceiver(
features=features,
receiver_tensors=receiver_tensors,
labels=transformed_features[_transformed_name(_LABEL_KEY)])