def custom_eval_shared_model()

in tfx_addons/xgboost_evaluator/xgboost_predict_extractor.py [0:0]


def custom_eval_shared_model(eval_saved_model_path, model_name, eval_config,
                             **kwargs) -> tfma.EvalSharedModel:
  """Returns a single custom EvalSharedModel."""
  model_path = os.path.join(eval_saved_model_path, 'model.json')
  return tfma.default_eval_shared_model(
      eval_saved_model_path=model_path,
      model_name=model_name,
      eval_config=eval_config,
      custom_model_loader=tfma.ModelLoader(
          construct_fn=_custom_model_loader_fn(model_path)),
      add_metrics_callbacks=kwargs.get('add_metrics_callbacks'))