in tfx_addons/xgboost_evaluator/xgboost_predict_extractor.py [0:0]
def custom_eval_shared_model(eval_saved_model_path, model_name, eval_config,
**kwargs) -> tfma.EvalSharedModel:
"""Returns a single custom EvalSharedModel."""
model_path = os.path.join(eval_saved_model_path, 'model.json')
return tfma.default_eval_shared_model(
eval_saved_model_path=model_path,
model_name=model_name,
eval_config=eval_config,
custom_model_loader=tfma.ModelLoader(
construct_fn=_custom_model_loader_fn(model_path)),
add_metrics_callbacks=kwargs.get('add_metrics_callbacks'))