in tfx_addons/sampling/example/sampler_utils.py [0:0]
def _fill_in_missing(x):
"""Replace missing values in a SparseTensor.
Fills in missing values of `x` with '' or 0, and converts to a dense tensor.
Args:
x: A `SparseTensor` of rank 2. Its dense shape should have size at most 1
in the second dimension.
Returns:
A rank 1 tensor where missing values of `x` have been filled in.
"""
if not isinstance(x, tf.sparse.SparseTensor):
return x
default_value = '' if x.dtype == tf.string else 0
return tf.squeeze(tf.sparse.to_dense(
tf.SparseTensor(x.indices, x.values, [x.dense_shape[0], 1]),
default_value),
axis=1)