def resnet_model_fn()

in models/official/resnet/resnet_main.py [0:0]


def resnet_model_fn(features, labels, mode, params):
  """The model_fn for ResNet to be used with TPUEstimator.

  Args:
    features: `Tensor` of batched images. If transpose_input is enabled, it
        is transposed to device layout and reshaped to 1D tensor.
    labels: `Tensor` of labels for the data samples
    mode: one of `tf.estimator.ModeKeys.{TRAIN,EVAL,PREDICT}`
    params: `dict` of parameters passed to the model from the TPUEstimator,
        `params['batch_size']` is always provided and should be used as the
        effective batch size.

  Returns:
    A `TPUEstimatorSpec` for the model
  """
  is_training = (mode == tf.estimator.ModeKeys.TRAIN)

  if isinstance(features, dict):
    features = features['feature']

  # In most cases, the default data format NCHW instead of NHWC should be
  # used for a significant performance boost on GPU/TPU. NHWC should be used
  # only if the network needs to be run on CPU since the pooling operations
  # are only supported on NHWC.
  if params['data_format'] == 'channels_first':
    assert not params['transpose_input']    # channels_first only for GPU
    features = tf.transpose(features, [0, 3, 1, 2])

  if params['transpose_input'] and mode != tf.estimator.ModeKeys.PREDICT:
    image_size = tf.sqrt(tf.shape(features)[0] / (3 * tf.shape(labels)[0]))
    features = tf.reshape(features, [image_size, image_size, 3, -1])
    features = tf.transpose(features, [3, 0, 1, 2])  # HWCN to NHWC

  # Normalize the image to zero mean and unit variance.
  features -= tf.constant(MEAN_RGB, shape=[1, 1, 3], dtype=features.dtype)
  features /= tf.constant(STDDEV_RGB, shape=[1, 1, 3], dtype=features.dtype)

  # DropBlock keep_prob for the 4 block groups of ResNet architecture.
  # None means applying no DropBlock at the corresponding block group.
  dropblock_keep_probs = [None] * 4
  if params['dropblock_groups']:
    # Scheduled keep_prob for DropBlock.
    train_steps = tf.cast(params['train_steps'], tf.float32)
    current_step = tf.cast(tf.train.get_global_step(), tf.float32)
    current_ratio = current_step / train_steps
    dropblock_keep_prob = (1 - current_ratio * (
        1 - params['dropblock_keep_prob']))

    # Computes DropBlock keep_prob for different block groups of ResNet.
    dropblock_groups = [int(x) for x in params['dropblock_groups'].split(',')]
    for block_group in dropblock_groups:
      if block_group < 1 or block_group > 4:
        raise ValueError(
            'dropblock_groups should be a comma separated list of integers '
            'between 1 and 4 (dropblcok_groups: {}).'
            .format(params['dropblock_groups']))
      dropblock_keep_probs[block_group - 1] = 1 - (
          (1 - dropblock_keep_prob) / 4.0**(4 - block_group))

  has_moving_average_decay = (params['moving_average_decay'] > 0)
  if has_moving_average_decay and params['bn_momentum'] > 0:
    raise ValueError(
        'Should not use exponential moving average and batch norm momentum')

  # This nested function allows us to avoid duplicating the logic which
  # builds the network, for different values of --precision.
  def build_network():
    network = resnet_model.resnet(
        resnet_depth=params['resnet_depth'],
        num_classes=params['num_label_classes'],
        dropblock_size=params['dropblock_size'],
        dropblock_keep_probs=dropblock_keep_probs,
        pre_activation=params['pre_activation'],
        norm_act_layer=params['norm_act_layer'],
        data_format=params['data_format'],
        se_ratio=params['se_ratio'],
        drop_connect_rate=params['drop_connect_rate'],
        use_resnetd_stem=params['use_resnetd_stem'],
        resnetd_shortcut=params['resnetd_shortcut'],
        replace_stem_max_pool=params['replace_stem_max_pool'],
        dropout_rate=params['dropout_rate'],
        bn_momentum=params['bn_momentum'])
    return network(
        inputs=features, is_training=(mode == tf.estimator.ModeKeys.TRAIN))

  if params['precision'] == 'bfloat16':
    with tf.tpu.bfloat16_scope():
      logits = build_network()
    logits = tf.cast(logits, tf.float32)
  elif params['precision'] == 'float32':
    logits = build_network()

  if mode == tf.estimator.ModeKeys.PREDICT:
    scaffold_fn = None
    if FLAGS.export_moving_average:
      # If the model is trained with moving average decay, to match evaluation
      # metrics, we need to export the model using moving average variables.
      restore_checkpoint = tf.train.latest_checkpoint(FLAGS.model_dir)
      variables_to_restore = get_pretrained_variables_to_restore(
          restore_checkpoint, load_moving_average=True)
      tf.logging.info('Restoring from the latest checkpoint: %s',
                      restore_checkpoint)
      tf.logging.info(str(variables_to_restore))

      def restore_scaffold():
        saver = tf.train.Saver(variables_to_restore)
        return tf.train.Scaffold(saver=saver)

      scaffold_fn = restore_scaffold

    predictions = {
        'classes': tf.argmax(logits, axis=1),
        'probabilities': tf.nn.softmax(logits, name='softmax_tensor')
    }
    return tf.estimator.EstimatorSpec(
        mode=mode,
        predictions=predictions,
        export_outputs={
            'classify': tf.estimator.export.PredictOutput(predictions)},
        scaffold_fn=scaffold_fn)

  # If necessary, in the model_fn, use params['batch_size'] instead the batch
  # size flags (--train_batch_size or --eval_batch_size).
  batch_size = params['batch_size']   # pylint: disable=unused-variable

  # Calculate loss, which includes softmax cross entropy and L2 regularization.
  one_hot_labels = tf.one_hot(labels, params['num_label_classes'])
  cross_entropy = tf.losses.softmax_cross_entropy(
      logits=logits,
      onehot_labels=one_hot_labels,
      label_smoothing=params['label_smoothing'])

  # Add weight decay to the loss for non-batch-normalization variables.
  if params['enable_lars']:
    loss = cross_entropy
  else:
    loss = cross_entropy + params['weight_decay'] * tf.add_n([
        tf.nn.l2_loss(v)
        for v in tf.trainable_variables()
        if 'batch_normalization' not in v.name and 'evonorm' not in v.name
    ])

  global_step = tf.train.get_global_step()
  if has_moving_average_decay:
    ema = tf.train.ExponentialMovingAverage(
        decay=params['moving_average_decay'], num_updates=global_step)
    ema_vars = get_ema_vars()

  host_call = None
  if mode == tf.estimator.ModeKeys.TRAIN:
    # Compute the current epoch and associated learning rate from global_step.
    global_step = tf.train.get_global_step()
    steps_per_epoch = params['num_train_images'] / params['train_batch_size']
    current_epoch = (tf.cast(global_step, tf.float32) /
                     steps_per_epoch)
    # LARS is a large batch optimizer. LARS enables higher accuracy at batch 16K
    # and larger batch sizes.
    if params['enable_lars']:
      learning_rate = 0.0
      optimizer = lars_util.init_lars_optimizer(current_epoch, params)
    else:
      learning_rate = learning_rate_schedule(params, current_epoch)
      optimizer = tf.train.MomentumOptimizer(
          learning_rate=learning_rate,
          momentum=params['momentum'],
          use_nesterov=True)
    if params['use_tpu']:
      # When using TPU, wrap the optimizer with CrossShardOptimizer which
      # handles synchronization details between different TPU cores. To the
      # user, this should look like regular synchronous training.
      optimizer = tf.tpu.CrossShardOptimizer(optimizer)

    # Batch normalization requires UPDATE_OPS to be added as a dependency to
    # the train operation.
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    with tf.control_dependencies(update_ops):
      train_op = optimizer.minimize(loss, global_step)

    if has_moving_average_decay:
      with tf.control_dependencies([train_op]):
        train_op = ema.apply(ema_vars)

    if not params['skip_host_call']:
      def host_call_fn(gs, loss, lr, ce):
        """Training host call. Creates scalar summaries for training metrics.

        This function is executed on the CPU and should not directly reference
        any Tensors in the rest of the `model_fn`. To pass Tensors from the
        model to the `metric_fn`, provide as part of the `host_call`. See
        https://www.tensorflow.org/api_docs/python/tf/estimator/tpu/TPUEstimatorSpec
        for more information.

        Arguments should match the list of `Tensor` objects passed as the second
        element in the tuple passed to `host_call`.

        Args:
          gs: `Tensor with shape `[batch]` for the global_step
          loss: `Tensor` with shape `[batch]` for the training loss.
          lr: `Tensor` with shape `[batch]` for the learning_rate.
          ce: `Tensor` with shape `[batch]` for the current_epoch.

        Returns:
          List of summary ops to run on the CPU host.
        """
        gs = gs[0]
        # Host call fns are executed params['iterations_per_loop'] times after
        # one TPU loop is finished, setting max_queue value to the same as
        # number of iterations will make the summary writer only flush the data
        # to storage once per loop.
        with tf2.summary.create_file_writer(
            FLAGS.model_dir,
            max_queue=params['iterations_per_loop']).as_default():
          with tf2.summary.record_if(True):
            tf2.summary.scalar('loss', loss[0], step=gs)
            tf2.summary.scalar('learning_rate', lr[0], step=gs)
            tf2.summary.scalar('current_epoch', ce[0], step=gs)

          return tf.summary.all_v2_summary_ops()

      # To log the loss, current learning rate, and epoch for Tensorboard, the
      # summary op needs to be run on the host CPU via host_call. host_call
      # expects [batch_size, ...] Tensors, thus reshape to introduce a batch
      # dimension. These Tensors are implicitly concatenated to
      # [params['batch_size']].
      gs_t = tf.reshape(global_step, [1])
      loss_t = tf.reshape(loss, [1])
      lr_t = tf.reshape(learning_rate, [1])
      ce_t = tf.reshape(current_epoch, [1])

      host_call = (host_call_fn, [gs_t, loss_t, lr_t, ce_t])

  else:
    train_op = None

  eval_metrics = None
  if mode == tf.estimator.ModeKeys.EVAL:
    def metric_fn(labels, logits):
      """Evaluation metric function. Evaluates accuracy.

      This function is executed on the CPU and should not directly reference
      any Tensors in the rest of the `model_fn`. To pass Tensors from the model
      to the `metric_fn`, provide as part of the `eval_metrics`. See
      https://www.tensorflow.org/api_docs/python/tf/estimator/tpu/TPUEstimatorSpec
      for more information.

      Arguments should match the list of `Tensor` objects passed as the second
      element in the tuple passed to `eval_metrics`.

      Args:
        labels: `Tensor` with shape `[batch]`.
        logits: `Tensor` with shape `[batch, num_classes]`.

      Returns:
        A dict of the metrics to return from evaluation.
      """
      predictions = tf.argmax(logits, axis=1)
      top_1_accuracy = tf.metrics.accuracy(labels, predictions)
      in_top_5 = tf.cast(tf.nn.in_top_k(logits, labels, 5), tf.float32)
      top_5_accuracy = tf.metrics.mean(in_top_5)

      return {
          'top_1_accuracy': top_1_accuracy,
          'top_5_accuracy': top_5_accuracy,
      }

    eval_metrics = (metric_fn, [labels, logits])

  # Prepares scaffold_fn if needed.
  scaffold_fn = None
  restore_vars_dict = None
  if not is_training and has_moving_average_decay:
    # Load moving average variables for eval.
    restore_vars_dict = ema.variables_to_restore(ema_vars)
    def eval_scaffold():
      saver = tf.train.Saver(restore_vars_dict)
      return tf.train.Scaffold(saver=saver)
    scaffold_fn = eval_scaffold

  return tf.estimator.tpu.TPUEstimatorSpec(
      mode=mode,
      loss=loss,
      train_op=train_op,
      host_call=host_call,
      eval_metrics=eval_metrics,
      scaffold_fn=scaffold_fn)