def _numeric_combine()

in tensorflow_transform/analyzers.py [0:0]


def _numeric_combine(inputs: List[tf.Tensor],
                     fn: Callable[[np.ndarray], np.ndarray],
                     default_accumulator_value: Union[float, int],
                     reduce_instance_dims: bool = True,
                     output_dtypes: Optional[List[tf.DType]] = None,
                     key: Optional[tf.Tensor] = None,
                     key_vocabulary_filename: Optional[str] = None):
  """Apply a reduction, defined by a numpy function to multiple inputs.

  Args:
    inputs: A list of tensors, which will be independently reduced.
    fn: A function to reduce tensors across instances/batches, to get a single
        output.
    default_accumulator_value: The default scalar value that each accumulator
        entry is initialized to. Must be properly processed by the reduction
        function.
    reduce_instance_dims: By default collapses the batch and instance dimensions
        to arrive at a single scalar output. If False, only collapses the batch
        dimension and outputs a vector of the same shape as the input.
    output_dtypes: (Optional) A list of dtypes of the output tensors. If None,
        the output tensor has the same type as the input one.
    key: (Optional) Apply the same operation, but on a per-key basis.
    key_vocabulary_filename: (Optional) The file name for the key-output mapping
      file. If None and key are provided, this combiner assumes the keys fit in
      memory and will not store the result in a file. If empty string, a file
      name will be chosen based on the current scope. If not an empty string,
      should be unique within a given preprocessing function.

  Returns:
      Either:
      (A) A list of Tensors with the same length as `inputs`, representing the
          input Tensors that have been reduced by `fn` across instances and
          batches (if key_vocabulary_filename is None).
      (B) A Tensor with the filename where the key-value mapping is stored (if
          key_vocabulary_filename is not None).
  """
  for x in inputs:
    if not isinstance(x, tf.Tensor):
      raise TypeError('Expected a Tensor, but got %r' % x)
  if not np.isscalar(default_accumulator_value):
    raise TypeError('Expected a scalar, but got %r' % default_accumulator_value)

  if output_dtypes is None:
    output_dtypes = [x.dtype for x in inputs]
  if reduce_instance_dims:
    # If reducing over all dimensions, result is scalar.
    output_shapes = [() for _ in inputs]
  else:
    # Reducing over batch dimensions.
    output_shapes = [
        (tuple(x.get_shape()) if x.get_shape().is_fully_defined() else None)
        for x in inputs
    ]
  combiner = NumPyCombiner(fn, default_accumulator_value,
                           [dtype.as_numpy_dtype for dtype in output_dtypes],
                           output_shapes)
  if key is None:
    return _apply_cacheable_combiner(combiner, *inputs)

  if key_vocabulary_filename is None:
    return _apply_cacheable_combiner_per_key(combiner, key, *inputs)

  return _apply_cacheable_combiner_per_key_large(
      combiner, _maybe_get_per_key_vocab_filename(key_vocabulary_filename),
      key, *inputs)