fastchat/train/train_flant5.py [407:431]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    tokenizer = transformers.T5Tokenizer.from_pretrained(
        model_args.model_name_or_path,
        cache_dir=training_args.cache_dir,
        model_max_length=training_args.model_max_length,
        padding_side="right",
        use_fast=False,
    )

    smart_tokenizer_and_embedding_resize(
        special_tokens_dict=dict(pad_token=DEFAULT_PAD_TOKEN),
        other_tokens=["<", "{", "\n", "}", "`", " ", "\\", "^", "\t"],
        tokenizer=tokenizer,
        model=model,
    )

    data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args)
    trainer = Trainer(
        model=model, tokenizer=tokenizer, args=training_args, **data_module
    )

    if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
        trainer.train(resume_from_checkpoint=True)
    else:
        trainer.train()
    trainer.save_state()
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



fastchat/train/train_lora_t5.py [177:202]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    tokenizer = transformers.T5Tokenizer.from_pretrained(
        model_args.model_name_or_path,
        cache_dir=training_args.cache_dir,
        model_max_length=training_args.model_max_length,
        padding_side="right",
        use_fast=False,
    )

    smart_tokenizer_and_embedding_resize(
        special_tokens_dict=dict(pad_token=DEFAULT_PAD_TOKEN),
        other_tokens=["<", "{", "\n", "}", "`", " ", "\\", "^", "\t"],
        tokenizer=tokenizer,
        model=model,
    )

    data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args)

    trainer = Trainer(
        model=model, tokenizer=tokenizer, args=training_args, **data_module
    )

    if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
        trainer.train(resume_from_checkpoint=True)
    else:
        trainer.train()
    trainer.save_state()
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



