def display_result_pairwise()

in fastchat/llm_judge/show_result.py [0:0]


def display_result_pairwise(args):
    if args.input_file is None:
        input_file = (
            f"data/{args.bench_name}/model_judgment/{args.judge_model}_pair.jsonl"
        )
    else:
        input_file = args.input_file

    print(f"Input file: {input_file}")
    df_all = pd.read_json(input_file, lines=True)
    df_all = df_all[(df_all["g1_winner"] != "error") & (df_all["g2_winner"] != "error")]

    model_list = (
        df_all["model_1"].unique().tolist() + df_all["model_2"].unique().tolist()
    )
    model_list = list(set(model_list))

    list_res = []
    # traverse df row by row
    for index, row in df_all.iterrows():
        if args.model_list is not None and row["model_1"] not in args.model_list:
            continue
        if args.baseline_model is not None:
            if args.baseline_model not in [row["model_1"], row["model_2"]]:
                continue
        if row["g1_winner"] == "tie" or row["g1_winner"] != row["g2_winner"]:
            list_res.append({"model": row["model_1"], "win": 0, "loss": 0, "tie": 1})
            list_res.append({"model": row["model_2"], "win": 0, "loss": 0, "tie": 1})
        else:
            if row["g1_winner"] == "model_1":
                winner = row["model_1"]
                loser = row["model_2"]
            else:
                winner = row["model_2"]
                loser = row["model_1"]
            list_res.append({"model": winner, "win": 1, "loss": 0, "tie": 0})
            list_res.append({"model": loser, "win": 0, "loss": 1, "tie": 0})

    df = pd.DataFrame(list_res)
    df = df.groupby(["model"]).sum()

    # remove baseline model
    if args.baseline_model is not None:
        df = df[df.index != args.baseline_model]
    # add win rate
    df["win_rate"] = df["win"] / (df["win"] + df["loss"] + df["tie"])
    df["loss_rate"] = df["loss"] / (df["win"] + df["loss"] + df["tie"])
    # each tie counts as 0.5 win + 0.5 loss
    df["win_rate_adjusted"] = (df["win"] + 0.5 * df["tie"]) / (
        df["win"] + df["loss"] + df["tie"]
    )
    # print(df.sort_values(by="win_rate", ascending=False))
    # print(df.sort_values(by="loss_rate", ascending=True))
    print(df.sort_values(by="win_rate_adjusted", ascending=False))