in fastchat/model/compression.py [0:0]
def load_compress_model(model_path, device, torch_dtype, use_fast, revision="main"):
# partially load model
# `use_fast=True`` is not supported for some models.
try:
tokenizer = AutoTokenizer.from_pretrained(
model_path, use_fast=use_fast, revision=revision, trust_remote_code=True
)
except TypeError:
tokenizer = AutoTokenizer.from_pretrained(
model_path, use_fast=~use_fast, revision=revision, trust_remote_code=True
)
with init_empty_weights():
# `trust_remote_code` should be set as `True` for both AutoConfig and AutoModel
config = AutoConfig.from_pretrained(
model_path,
low_cpu_mem_usage=True,
torch_dtype=torch_dtype,
trust_remote_code=True,
revision=revision,
)
# some models are loaded by AutoModel but not AutoModelForCausalLM,
# such as chatglm, chatglm2
try:
# google/flan-* models are based on an AutoModelForSeq2SeqLM.
if "T5Config" in str(type(config)):
model = AutoModelForSeq2SeqLM.from_config(
config, trust_remote_code=True
)
else:
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True)
except NameError:
model = AutoModel.from_config(config, trust_remote_code=True)
linear_weights = get_compressed_list(model)
if os.path.exists(model_path):
# `model_path` is a local folder
base_pattern = os.path.join(model_path, "pytorch_model*.bin")
else:
# `model_path` is a cached Hugging Face repo
# We don't necessarily need to download the model' repo again if there is a cache.
# So check the default huggingface cache first.
model_path_temp = os.path.join(
os.path.expanduser("~"),
".cache/huggingface/hub",
"models--" + model_path.replace("/", "--"),
"snapshots/",
)
downloaded = False
if os.path.exists(model_path_temp):
temp_last_dir = os.listdir(model_path_temp)[-1]
model_path_temp = os.path.join(model_path_temp, temp_last_dir)
base_pattern = os.path.join(model_path_temp, "pytorch_model*.bin")
files = glob.glob(base_pattern)
if len(files) > 0:
downloaded = True
if downloaded:
model_path = model_path_temp
else:
model_path = snapshot_download(model_path, revision=revision)
base_pattern = os.path.join(model_path, "pytorch_model*.bin")
files = glob.glob(base_pattern)
use_safetensors = False
if len(files) == 0:
base_pattern = os.path.join(model_path, "*.safetensors")
files = glob.glob(base_pattern)
use_safetensors = True
if len(files) == 0:
raise ValueError(
f"Cannot find any model weight files. "
f"Please check your (cached) weight path: {model_path}"
)
compressed_state_dict = {}
if use_safetensors:
from safetensors.torch import load_file
for filename in tqdm(files):
if use_safetensors:
tmp_state_dict = load_file(filename)
else:
tmp_state_dict = torch.load(
filename, map_location=lambda storage, loc: storage
)
for name in tmp_state_dict:
if name in linear_weights:
tensor = tmp_state_dict[name].to(device, dtype=torch_dtype)
compressed_state_dict[name] = compress(
tensor, default_compression_config
)
else:
compressed_state_dict[name] = tmp_state_dict[name].to(
device, dtype=torch_dtype
)
tmp_state_dict[name] = None
tensor = None
gc.collect()
torch.cuda.empty_cache()
if device == "xpu":
torch.xpu.empty_cache()
if device == "npu":
torch.npu.empty_cache()
for name in model.state_dict():
if name not in linear_weights:
set_module_tensor_to_device(
model, name, device, value=compressed_state_dict[name]
)
apply_compressed_weight(model, compressed_state_dict, device)
if torch_dtype == torch.float16:
model.half()
model.to(device)
model.eval()
return model, tokenizer