build_obelics/13_final_processing.py (276 lines of code) (raw):
import json
import logging
import os
import pickle
import sys
from collections import Counter
from copy import deepcopy
import datasets
from datasets import load_from_disk
from PIL import Image, ImageFile
from m4.sourcing.data_collection.processors.web_document_filtering import FilteringFunctions
from m4.sourcing.data_collection.utils.filtering_utils import SPECIAL_CHARACTERS
# Useful to avoid DecompressionBombError
Image.MAX_IMAGE_PIXELS = None
# Load even truncated images
ImageFile.LOAD_TRUNCATED_IMAGES = True
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
)
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
SPAM_WORDS = [
"facebook",
"twitter",
"instagram",
"reddit",
"youtube",
"pinterest",
"flickr",
"share",
"tweet",
"post",
"comment",
"subscribe",
"newletter",
"blogger",
"bloggers",
"interested",
"might",
"like",
"sign-up",
"sign",
"log",
"logged",
"access",
"contact",
"content",
"privacy",
"policy",
"website",
"cookies",
"cookie",
"licensed",
"password",
"account",
"follow",
"terms",
"mailing",
"list",
"download",
"loading",
"click",
]
SPAM_WORD_RATIO_CUTOFF = 0.12
IDX_JOB = int(sys.argv[1])
PATH_SAVE_DISK_TMP_FILES = f"/scratch/storage_hugo_{IDX_JOB}/"
MAX_NUM_RETRIES_SYNC = 3
PATH_WEB_DOCS_S3 = f"s3://m4-datasets/webdocs/web_document_dataset_filtered_imgurldedup_nsfwfiltered_urldedup_linededup_finalcleaning_setimgurlsdedup_optoutrmv/{IDX_JOB}"
PATH_WEB_DOCS_LOCAL = os.path.join(PATH_SAVE_DISK_TMP_FILES, "web_docs")
NUM_PROC = 20
PATH_SAVE_DISK_WEB_DOCS_FINAL_PROCESSING = os.path.join(PATH_SAVE_DISK_TMP_FILES, "web_docs_finalprocessing")
PATH_SAVE_S3_WEB_DOCS_FINAL_PROCESSING = f"s3://m4-datasets/webdocs/web_document_dataset_filtered_imgurldedup_nsfwfiltered_urldedup_linededup_finalcleaning_setimgurlsdedup_optoutrmv_finalprocessing/{IDX_JOB}"
PATH_SAVE_DISK_WEB_DOCS_FINAL_PROCESSING_IMAGES_REPLACED_BY_URLS = os.path.join(
PATH_SAVE_DISK_TMP_FILES, "web_docs_finalprocessing_replaceimgbyurl"
)
PATH_SAVE_S3_WEB_DOCS_FINAL_PROCESSING_IMAGES_REPLACED_BY_URLS = f"s3://m4-datasets/webdocs/web_document_dataset_filtered_imgurldedup_nsfwfiltered_urldedup_linededup_finalcleaning_setimgurlsdedup_optoutrmv_finalprocessing_replaceimgbyurl/{IDX_JOB}"
PATH_SAVE_DISK_IMG_URLS_IN_FINAL_WEB_DOCS = os.path.join(PATH_SAVE_DISK_TMP_FILES, "img_urls.pickle")
PATH_SAVE_S3_IMG_URLS_IN_FINAL_WEB_DOCS = (
f"s3://m4-datasets/webdocs/img_urls_in_final_web_docs_3/{IDX_JOB}/img_urls.pickle"
)
def remove_duplicated_images(texts, images, metadata):
indices_to_remove = set()
set_image_urls = set()
for idx, meta in enumerate(metadata):
if meta:
url = meta["src"]
if url not in set_image_urls:
set_image_urls.add(url)
else:
indices_to_remove.add(idx)
if indices_to_remove:
texts = [el for ind, el in enumerate(texts) if ind not in indices_to_remove]
images = [el for ind, el in enumerate(images) if ind not in indices_to_remove]
metadata = [el for ind, el in enumerate(metadata) if ind not in indices_to_remove]
return texts, images, metadata
def compute_spam_word_ratio(txt):
words = FilteringFunctions.get_words_from_text(
text=txt, lower_case=True, strip_words=True, strip_characters=SPECIAL_CHARACTERS
)
if not words:
return 0
spam_word_ratio = len([word for word in words if word in SPAM_WORDS]) / len(words)
return spam_word_ratio
def remove_spam_paragraphs(texts, images, metadata):
new_texts = []
for text in texts:
if text is None:
new_texts.append(None)
else:
paragraphs = text.split("\n\n")
new_paragraphs = [
paragraph for paragraph in paragraphs if compute_spam_word_ratio(paragraph) < SPAM_WORD_RATIO_CUTOFF
]
new_text = "\n\n".join(new_paragraphs)
new_texts.append(new_text)
return new_texts, images, metadata
def merge_consecutive_END_OF_DOCUMENT_TOKEN_TO_BE_REPLACED(texts, images, metadata):
new_texts = []
for text in texts:
if text is None:
new_texts.append(None)
else:
paragraphs = text.split("\n\n")
indices_to_remove = set()
last_is_eos = False
for ind, paragraph in enumerate(paragraphs):
if last_is_eos:
if paragraph.strip() == "END_OF_DOCUMENT_TOKEN_TO_BE_REPLACED":
indices_to_remove.add(ind)
else:
last_is_eos = False
else:
if paragraph.strip() == "END_OF_DOCUMENT_TOKEN_TO_BE_REPLACED":
last_is_eos = True
new_paragraphs = [el for ind, el in enumerate(paragraphs) if ind not in indices_to_remove]
new_text = "\n\n".join(new_paragraphs)
new_texts.append(new_text)
return new_texts, images, metadata
def remove_end_END_OF_DOCUMENT_TOKEN_TO_BE_REPLACED(texts, images, metadata):
if len(texts) > 0:
last_text = texts[-1]
if last_text:
paragraphs = last_text.split("\n\n")
if (len(paragraphs) > 0) and (paragraphs[-1] == "END_OF_DOCUMENT_TOKEN_TO_BE_REPLACED"):
paragraphs = paragraphs[:-1]
last_text = "\n\n".join(paragraphs)
texts[-1] = last_text
return texts, images, metadata
def final_cleaning_node_level(texts, images, metadata):
new_texts = []
new_images = []
new_metadata = []
previous_is_text = False
for text, image, meta in zip(texts, images, metadata):
if text is not None:
assert image is None
assert meta is None
if text == "":
continue
if previous_is_text:
new_texts[-1] = new_texts[-1] + "\n\n" + text
else:
new_texts.append(text)
new_images.append(None)
new_metadata.append(None)
previous_is_text = True
elif image is not None:
assert (text is None) and (meta is not None)
new_texts.append(None)
new_images.append(image)
new_metadata.append(meta)
previous_is_text = False
elif meta is not None:
raise ValueError("metadata cannot be != None if text and image are None")
assert len(new_texts) == len(new_images) == len(new_metadata)
return new_texts, new_images, new_metadata
def func_map_final_processing_node_level(example):
texts = example["texts"]
images = example["images"]
metadata = json.loads(example["metadata"])
assert len(texts) == len(images) == len(metadata)
new_texts, new_images, new_metadata = remove_duplicated_images(texts, images, metadata)
new_texts, new_images, new_metadata = remove_spam_paragraphs(new_texts, new_images, new_metadata)
new_texts, new_images, new_metadata = final_cleaning_node_level(new_texts, new_images, new_metadata)
new_texts, new_images, new_metadata = merge_consecutive_END_OF_DOCUMENT_TOKEN_TO_BE_REPLACED(
new_texts, new_images, new_metadata
)
new_texts, new_images, new_metadata = remove_end_END_OF_DOCUMENT_TOKEN_TO_BE_REPLACED(
new_texts, new_images, new_metadata
)
new_texts, new_images, new_metadata = final_cleaning_node_level(new_texts, new_images, new_metadata)
example["texts"] = new_texts
example["images"] = new_images
example["metadata"] = json.dumps(new_metadata)
return example
def remove_texts_only_END_OF_DOCUMENT_TOKEN_TO_BE_REPLACED(example):
texts_example = example["texts"]
texts = [txt for txt in texts_example if txt]
return not all([txt.strip() == "END_OF_DOCUMENT_TOKEN_TO_BE_REPLACED" for txt in texts])
def final_cleaning_doc_level(example):
texts_example = example["texts"]
texts = [txt for txt in texts_example if txt]
images = [txt for txt in texts_example if not txt]
if not texts or not images:
return False
return True
def func_filter_final_processing_doc_level(example):
if not remove_texts_only_END_OF_DOCUMENT_TOKEN_TO_BE_REPLACED(example):
return False
if not final_cleaning_doc_level(example):
return False
return True
def func_map_replace_images_by_urls(example):
metadata = json.loads(example["metadata"])
image_urls = [meta["src"] if meta else None for meta in metadata]
example["images"] = image_urls
return example
if __name__ == "__main__":
if os.path.exists(PATH_SAVE_DISK_TMP_FILES):
os.system(f"rm -rf {PATH_SAVE_DISK_TMP_FILES}")
os.system(f"mkdir {PATH_SAVE_DISK_TMP_FILES}")
logger.info("Starting downloading the web document dataset")
command_sync_s3 = f"aws s3 sync {PATH_WEB_DOCS_S3} {PATH_WEB_DOCS_LOCAL}"
for _ in range(MAX_NUM_RETRIES_SYNC):
os.system(command_sync_s3)
web_docs = load_from_disk(PATH_WEB_DOCS_LOCAL)
logger.info("Finished downloading the web document dataset")
logger.info("Starting doing the final processing")
web_docs = web_docs.map(func_map_final_processing_node_level, num_proc=NUM_PROC)
web_docs = web_docs.filter(func_filter_final_processing_doc_level, num_proc=NUM_PROC)
logger.info("Finished doing the final processing")
logger.info("Starting saving the web document dataset after the final processing")
web_docs.save_to_disk(PATH_SAVE_DISK_WEB_DOCS_FINAL_PROCESSING, num_proc=NUM_PROC)
command_sync_s3 = (
f"aws s3 sync {PATH_SAVE_DISK_WEB_DOCS_FINAL_PROCESSING} {PATH_SAVE_S3_WEB_DOCS_FINAL_PROCESSING}"
)
for _ in range(MAX_NUM_RETRIES_SYNC):
os.system(command_sync_s3)
logger.info("Finished saving the web document dataset after the final processing")
logger.info("Starting replacing the images by their URLs")
new_features = deepcopy(web_docs.features)
new_features["images"] = datasets.Sequence(datasets.Value("string"))
web_docs = web_docs.map(func_map_replace_images_by_urls, features=new_features, num_proc=NUM_PROC)
logger.info("Finished replacing the images by their URLs")
logger.info(
"Starting saving the web document dataset after the final processing and the replacement of images to URLs"
)
web_docs.save_to_disk(PATH_SAVE_DISK_WEB_DOCS_FINAL_PROCESSING_IMAGES_REPLACED_BY_URLS, num_proc=NUM_PROC)
command_sync_s3 = (
"aws s3 sync"
f" {PATH_SAVE_DISK_WEB_DOCS_FINAL_PROCESSING_IMAGES_REPLACED_BY_URLS} {PATH_SAVE_S3_WEB_DOCS_FINAL_PROCESSING_IMAGES_REPLACED_BY_URLS}"
)
for _ in range(MAX_NUM_RETRIES_SYNC):
os.system(command_sync_s3)
logger.info(
"Finished saving the web document dataset after the final processing and the replacement of images to URLs"
)
logger.info("Starting saving the image urls in the web document dataset")
img_urls = [[el["src"] for el in json.loads(md) if el] for md in web_docs["metadata"]]
img_urls = [sub_el for el in img_urls for sub_el in el]
img_urls = Counter(img_urls)
with open(PATH_SAVE_DISK_IMG_URLS_IN_FINAL_WEB_DOCS, "wb") as f:
pickle.dump(img_urls, f, pickle.HIGHEST_PROTOCOL)
command_sync_s3 = (
f"aws s3 cp {PATH_SAVE_DISK_IMG_URLS_IN_FINAL_WEB_DOCS} {PATH_SAVE_S3_IMG_URLS_IN_FINAL_WEB_DOCS}"
)
os.system(command_sync_s3)
logger.info("Finished saving the image urls in the web document dataset")
logger.info(f"Number of documents in the web document dataset after the final processing: {web_docs.num_rows}")
logger.info(
"Number of images (with duplicates) in the web document dataset after the final processing:"
f" {sum(list(img_urls.values()))}"
)
logger.info("Starting deleting the tmp files")
os.system(f"rm -rf {PATH_SAVE_DISK_TMP_FILES}")
logger.info("Finished deleting the tmp files")