obelics/callers/extract_html.py (53 lines of code) (raw):
import argparse
import logging
from multiprocessing import cpu_count
from datasets import load_from_disk
from obelics.processors import HtmlExtractor
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
)
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
def get_args():
parser = argparse.ArgumentParser(description="Extract html from warc files.")
parser.add_argument(
"--path_warc_dataset",
type=str,
default="./large_files/warc_dataset_10000",
help="Path of the dataset containing the warc files to retrieve the html.",
)
parser.add_argument(
"--path_save_dir_html_dataset",
type=str,
default="./large_files/html_dataset_10000",
help="The directory to save the html dataset.",
)
parser.add_argument(
"--num_proc",
type=int,
default=cpu_count(),
help="Number of processes to use for the multiprocessing.",
)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = get_args()
logger.info("Starting loading the warc or previous html dataset")
warc_dataset = load_from_disk(args.path_warc_dataset)
if ("html" not in warc_dataset.column_names) and ("html_error" not in warc_dataset.column_names):
warc_dataset = warc_dataset.add_column("html", [""] * len(warc_dataset))
warc_dataset = warc_dataset.add_column("html_error", [""] * len(warc_dataset))
logger.info("Finished loading the warc or previous html dataset")
html_extractor = HtmlExtractor()
logger.info("Starting retrieving the html")
html_dataset = warc_dataset.map(html_extractor, num_proc=args.num_proc)
logger.info("Finished retrieving the html")
logger.info("Starting saving the html dataset")
html_dataset.save_to_disk(args.path_save_dir_html_dataset)
logger.info("Finished saving the html dataset")
logger.info("Starting computing the success rate")
num_successes = len([1 for el in html_dataset["html_error"] if not el])
logger.info(f"Success rate: {num_successes} / {len(html_dataset)} ({num_successes / len(html_dataset) * 100}%)")
logger.info("Finished computing the success rate")