benchmarks/fp8/torchao/distrib_deepspeed.py [191:211]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    return base_model_results, trained_model_results, model_outputs, data


if __name__ == "__main__":
    for zero_stage in [1, 2, 3]:
        baseline_not_trained, baseline_trained, baseline_outputs, baseline_data = train_baseline(zero_stage)
        accelerator_not_trained, accelerator_trained, accelerator_outputs, accelerator_data = train_integration(
            zero_stage
        )
        assert baseline_not_trained["accuracy"] == accelerator_not_trained["accuracy"], (
            f"ZERO stage {zero_stage}: Accuracy should be the same for the baseline and accelerator: {baseline_not_trained['accuracy']} == {accelerator_not_trained['accuracy']}"
        )
        assert baseline_not_trained["f1"] == accelerator_not_trained["f1"], (
            f"ZERO stage {zero_stage}: F1 score should be the same for the baseline and accelerator: {baseline_not_trained['f1']} == {accelerator_not_trained['f1']}"
        )
        assert baseline_trained["accuracy"] == accelerator_trained["accuracy"], (
            f"ZERO stage {zero_stage}: Accuracy should be the same for the baseline and accelerator: {baseline_trained['accuracy']} == {accelerator_trained['accuracy']}"
        )
        assert baseline_trained["f1"] == accelerator_trained["f1"], (
            f"ZERO stage {zero_stage}: F1 score should be the same for the baseline and accelerator: {baseline_trained['f1']} == {accelerator_trained['f1']}"
        )
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



benchmarks/fp8/transformer_engine/distrib_deepspeed.py [169:189]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    return base_model_results, trained_model_results, model_outputs, data


if __name__ == "__main__":
    for zero_stage in [1, 2, 3]:
        baseline_not_trained, baseline_trained, baseline_outputs, baseline_data = train_baseline(zero_stage)
        accelerator_not_trained, accelerator_trained, accelerator_outputs, accelerator_data = train_integration(
            zero_stage
        )
        assert baseline_not_trained["accuracy"] == accelerator_not_trained["accuracy"], (
            f"ZERO stage {zero_stage}: Accuracy should be the same for the baseline and accelerator: {baseline_not_trained['accuracy']} == {accelerator_not_trained['accuracy']}"
        )
        assert baseline_not_trained["f1"] == accelerator_not_trained["f1"], (
            f"ZERO stage {zero_stage}: F1 score should be the same for the baseline and accelerator: {baseline_not_trained['f1']} == {accelerator_not_trained['f1']}"
        )
        assert baseline_trained["accuracy"] == accelerator_trained["accuracy"], (
            f"ZERO stage {zero_stage}: Accuracy should be the same for the baseline and accelerator: {baseline_trained['accuracy']} == {accelerator_trained['accuracy']}"
        )
        assert baseline_trained["f1"] == accelerator_trained["f1"], (
            f"ZERO stage {zero_stage}: F1 score should be the same for the baseline and accelerator: {baseline_trained['f1']} == {accelerator_trained['f1']}"
        )
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



