benchmarks/fp8/torchao/distrib_deepspeed.py [118:134]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        outputs = model(**batch)
        data.append(batch.to("cpu"))
        model_outputs.append(outputs.logits.to("cpu"))
        loss = outputs.loss
        model.backward(loss)
        model.step()
        for _ in range(accelerator.num_processes):
            lr_scheduler.step()

    trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
    model.destroy()
    assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
        f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
    )
    assert trained_model_results["f1"] > base_model_results["f1"], (
        f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
    )
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



benchmarks/fp8/transformer_engine/distrib_deepspeed.py [105:121]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                outputs = model(**batch)
                data.append(batch.to("cpu"))
            model_outputs.append(outputs.logits.to("cpu"))
            loss = outputs.loss
            model.backward(loss)
            model.step()
            for _ in range(accelerator.num_processes):
                lr_scheduler.step()

    trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
    model.destroy()
    assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
        f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
    )
    assert trained_model_results["f1"] > base_model_results["f1"], (
        f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
    )
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



