benchmarks/fp8/ms_amp/ddp.py [89:108]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            outputs = model(**batch)
            loss = outputs.loss
        accelerator.backward(loss)
        optimizer.step()
        optimizer.zero_grad()
        lr_scheduler.step()

    trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)

    assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
        f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
    )
    assert trained_model_results["f1"] > base_model_results["f1"], (
        f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
    )

    return base_model_results, trained_model_results


if __name__ == "__main__":
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



benchmarks/fp8/torchao/ddp.py [122:141]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        outputs = model(**batch)
        loss = outputs.loss
        accelerator.backward(loss)
        optimizer.step()
        optimizer.zero_grad()
        lr_scheduler.step()

    trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)

    assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
        f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
    )
    assert trained_model_results["f1"] > base_model_results["f1"], (
        f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
    )

    return base_model_results, trained_model_results


if __name__ == "__main__":
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



