def train_baseline()

in benchmarks/fp8/torchao/distrib_deepspeed.py [0:0]


def train_baseline(zero_stage: int = 1):
    set_seed(42)
    # This forces transformers to think Zero-3 Init should be used
    with patch("transformers.integrations.deepspeed.is_deepspeed_zero3_enabled") as mock:
        mock.return_value = zero_stage == 3

    config = HfDeepSpeedConfig(
        {
            "train_micro_batch_size_per_gpu": 16,
            "gradient_accumulation_steps": 1,
            "zero_optimization": {"stage": zero_stage},
        }
    )
    plugin = DeepSpeedPlugin(hf_ds_config=config)
    accelerator = Accelerator(deepspeed_plugin=plugin)
    model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(
        MODEL_NAME, accelerator=accelerator
    )
    first_linear = None
    last_linear = None
    for name, module in model.named_modules():
        if isinstance(module, torch.nn.Linear):
            if first_linear is None:
                first_linear = name
            last_linear = name
    func = partial(filter_linear_layers, first_layer_name=first_linear, last_layer_name=last_linear)

    convert_to_float8_training(model, module_filter_fn=func)

    import numpy as np

    config = {
        "train_batch_size": 32,
        "train_micro_batch_size_per_gpu": 16,
        "gradient_accumulation_steps": 1,
        "zero_optimization": {
            "stage": zero_stage,
            "offload_optimizer": {"device": "none", "nvme_path": None},
            "offload_param": {"device": "none", "nvme_path": None},
            "stage3_gather_16bit_weights_on_model_save": False,
        },
        "gradient_clipping": 1.0,
        "steps_per_print": np.inf,
        "bf16": {"enabled": True},
        "fp16": {"enabled": False},
        "zero_allow_untested_optimizer": True,
    }

    (
        model,
        optimizer,
        _,
        lr_scheduler,
    ) = deepspeed.initialize(
        model=model,
        optimizer=optimizer,
        lr_scheduler=lr_scheduler,
        config_params=config,
    )

    base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
    model.train()

    model_outputs = []
    data = []

    for batch in train_dataloader:
        outputs = model(**batch)
        data.append(batch.to("cpu"))
        model_outputs.append(outputs.logits.to("cpu"))
        loss = outputs.loss
        model.backward(loss)
        model.step()
        for _ in range(accelerator.num_processes):
            lr_scheduler.step()

    trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
    model.destroy()
    assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
        f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
    )
    assert trained_model_results["f1"] > base_model_results["f1"], (
        f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
    )

    del config
    return base_model_results, trained_model_results, model_outputs, data