in src/accelerate/utils/random.py [0:0]
def synchronize_rng_state(rng_type: Optional[RNGType] = None, generator: Optional[torch.Generator] = None):
# Get the proper rng state
if rng_type == RNGType.TORCH:
rng_state = torch.get_rng_state()
elif rng_type == RNGType.CUDA:
rng_state = torch.cuda.get_rng_state()
elif rng_type == RNGType.XLA:
assert is_torch_xla_available(), "Can't synchronize XLA seeds as torch_xla is unavailable."
rng_state = torch.tensor(xm.get_rng_state())
elif rng_type == RNGType.NPU:
assert is_npu_available(), "Can't synchronize NPU seeds on an environment without NPUs."
rng_state = torch.npu.get_rng_state()
elif rng_type == RNGType.MLU:
assert is_mlu_available(), "Can't synchronize MLU seeds on an environment without MLUs."
rng_state = torch.mlu.get_rng_state()
elif rng_type == RNGType.SDAA:
assert is_sdaa_available(), "Can't synchronize SDAA seeds on an environment without SDAAs."
rng_state = torch.sdaa.get_rng_state()
elif rng_type == RNGType.MUSA:
assert is_musa_available(), "Can't synchronize MUSA seeds on an environment without MUSAs."
rng_state = torch.musa.get_rng_state()
elif rng_type == RNGType.XPU:
assert is_xpu_available(), "Can't synchronize XPU seeds on an environment without XPUs."
rng_state = torch.xpu.get_rng_state()
elif rng_type == RNGType.HPU:
assert is_hpu_available(), "Can't synchronize HPU seeds on an environment without HPUs."
rng_state = torch.hpu.get_rng_state()
elif rng_type == RNGType.GENERATOR:
assert generator is not None, "Need a generator to synchronize its seed."
rng_state = generator.get_state()
# Broadcast the rng state from device 0 to other devices
state = AcceleratorState()
if state.distributed_type == DistributedType.XLA:
rng_state = rng_state.to(xm.xla_device())
xm.collective_broadcast([rng_state])
xm.mark_step()
rng_state = rng_state.cpu()
elif (
state.distributed_type in CUDA_DISTRIBUTED_TYPES
or state.distributed_type == DistributedType.MULTI_MLU
or state.distributed_type == DistributedType.MULTI_SDAA
or state.distributed_type == DistributedType.MULTI_MUSA
or state.distributed_type == DistributedType.MULTI_NPU
or state.distributed_type == DistributedType.MULTI_XPU
or state.distributed_type == DistributedType.MULTI_HPU
):
rng_state = rng_state.to(state.device)
torch.distributed.broadcast(rng_state, 0)
rng_state = rng_state.cpu()
elif state.distributed_type == DistributedType.MULTI_CPU:
torch.distributed.broadcast(rng_state, 0)
# Set the broadcast rng state
if rng_type == RNGType.TORCH:
torch.set_rng_state(rng_state)
elif rng_type == RNGType.CUDA:
torch.cuda.set_rng_state(rng_state)
elif rng_type == RNGType.NPU:
torch.npu.set_rng_state(rng_state)
elif rng_type == RNGType.MLU:
torch.mlu.set_rng_state(rng_state)
elif rng_type == RNGType.SDAA:
torch.sdaa.set_rng_state(rng_state)
elif rng_type == RNGType.MUSA:
torch.musa.set_rng_state(rng_state)
elif rng_type == RNGType.XPU:
torch.xpu.set_rng_state(rng_state)
elif rng_state == RNGType.HPU:
torch.hpu.set_rng_state(rng_state)
elif rng_type == RNGType.XLA:
xm.set_rng_state(rng_state.item())
elif rng_type == RNGType.GENERATOR:
generator.set_state(rng_state)