in benchmarks/fp8/ms_amp/distrib_deepspeed.py [0:0]
def train_baseline(zero_stage: int = 1, opt_level: str = "O1"):
set_seed(42)
accelerator = Accelerator()
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(
MODEL_NAME, accelerator=accelerator
)
import numpy as np
config = {
"train_batch_size": 32,
"train_micro_batch_size_per_gpu": 16,
"gradient_accumulation_steps": 1,
"zero_optimization": {
"stage": zero_stage,
"offload_optimizer": {"device": "none", "nvme_path": None},
"offload_param": {"device": "none", "nvme_path": None},
},
"gradient_clipping": 1.0,
"steps_per_print": np.inf,
"bf16": {"enabled": True},
"fp16": {"enabled": False},
"zero_allow_untested_optimizer": True,
"msamp": {
"enabled": True,
"opt_level": opt_level,
},
}
(
model,
optimizer,
_,
_,
) = msamp_deepspeed.initialize(
model=model,
optimizer=optimizer,
config_params=config,
)
base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
model.train()
for _ in range(2):
for batch in train_dataloader:
outputs = model(**batch)
loss = outputs.loss
model.backward(loss)
model.step()
for _ in range(accelerator.num_processes):
lr_scheduler.step()
trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
model.destroy()
torch.cuda.empty_cache()
AcceleratorState()._reset_state(True)
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
)
assert trained_model_results["f1"] > base_model_results["f1"], (
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
)
return base_model_results, trained_model_results