benchmarks/fp8/ms_amp/ddp.py (81 lines of code) (raw):

# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script tests to ensure that `accelerate` performs at the same level as raw `MS-AMP`. This particular script verifies this for DDP training. """ import evaluate import msamp import torch from fp8_utils import evaluate_model, get_training_utilities from torch.nn.parallel import DistributedDataParallel as DDP from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.utils import FP8RecipeKwargs, get_grad_scaler, set_seed MODEL_NAME = "bert-base-cased" METRIC = evaluate.load("glue", "mrpc") def train_baseline(opt_level="O2"): set_seed(42) scaler = get_grad_scaler() model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(MODEL_NAME) accelerator = Accelerator() device = accelerator.device model, optimizer = msamp.initialize(model, optimizer, opt_level=opt_level) model.to(device) # Convert the model to DDP device_ids, output_device = [accelerator.local_process_index], accelerator.local_process_index model = DDP(model, device_ids=device_ids, output_device=output_device) base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator) model.train() for i, batch in enumerate(train_dataloader): with torch.autocast(device_type="cuda", dtype=torch.bfloat16): outputs = model(**batch) loss = outputs.loss scaler.scale(loss).backward() optimizer.step() optimizer.zero_grad() lr_scheduler.step() trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator) assert trained_model_results["accuracy"] > base_model_results["accuracy"], ( f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}" ) assert trained_model_results["f1"] > base_model_results["f1"], ( f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}" ) return base_model_results, trained_model_results def train_integration(opt_level="O2"): kwargs_handlers = [FP8RecipeKwargs(backend="msamp", opt_level=opt_level)] AcceleratorState()._reset_state(True) accelerator = Accelerator(mixed_precision="fp8", kwargs_handlers=kwargs_handlers) set_seed(42) model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities( MODEL_NAME, accelerator=accelerator ) model, optimizer = accelerator.prepare(model, optimizer) base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator) model.train() for i, batch in enumerate(train_dataloader): with torch.autocast(device_type="cuda", dtype=torch.bfloat16): outputs = model(**batch) loss = outputs.loss accelerator.backward(loss) optimizer.step() optimizer.zero_grad() lr_scheduler.step() trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator) assert trained_model_results["accuracy"] > base_model_results["accuracy"], ( f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}" ) assert trained_model_results["f1"] > base_model_results["f1"], ( f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}" ) return base_model_results, trained_model_results if __name__ == "__main__": for opt_level in ["O1", "O2"]: baseline_not_trained, baseline_trained = train_baseline(opt_level) accelerator_not_trained, accelerator_trained = train_integration(opt_level) assert baseline_not_trained["accuracy"] == accelerator_not_trained["accuracy"], ( f"Accuracy not the same for untrained baseline and accelerator using opt_level={opt_level}: {baseline_not_trained['accuracy']} == {accelerator_not_trained['accuracy']}" ) assert baseline_not_trained["f1"] == accelerator_not_trained["f1"], ( f"F1 not the same for untrained baseline and accelerator using opt_level={opt_level}: {baseline_not_trained['f1']} == {accelerator_not_trained['f1']}" ) assert baseline_trained["accuracy"] == accelerator_trained["accuracy"], ( f"Accuracy not the same for trained baseline and accelerator using opt_level={opt_level}: {baseline_trained['accuracy']} == {accelerator_trained['accuracy']}" ) assert baseline_trained["f1"] == accelerator_trained["f1"], ( f"F1 not the same for trained baseline and accelerator using opt_level={opt_level}: {baseline_trained['f1']} == {accelerator_trained['f1']}" )