benchmarks/fp8/torchao/fp8_utils.py (66 lines of code) (raw):

# Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch def get_dataloaders(model_name: str, batch_size: int = 16): from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(model_name) datasets = load_dataset("glue", "mrpc") def tokenize_function(examples): # max_length=None => use the model max length (it's actually the default) outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: tokenized_datasets = datasets.map( tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library tokenized_datasets = tokenized_datasets.rename_column("label", "labels") def collate_fn(examples): return tokenizer.pad( examples, padding="longest", pad_to_multiple_of=16, # Specific for FP8 return_tensors="pt", ) # Instantiate dataloaders. train_dataloader = DataLoader( tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size, drop_last=True ) eval_dataloader = DataLoader( tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=16, drop_last=True, ) return train_dataloader, eval_dataloader def get_training_utilities(model_name: str, batch_size: int = 16, accelerator=None, prepare=True): """ Returns a tuple of: - Model - Optimizer - Train dataloader (prepared) - Eval dataloader (prepared) - LR Scheduler Suitable for training on the MRPC dataset """ from torch.optim import AdamW from transformers import AutoModelForSequenceClassification, get_linear_schedule_with_warmup from accelerate import Accelerator if accelerator is None: accelerator = Accelerator() model = AutoModelForSequenceClassification.from_pretrained(model_name) train_dataloader, eval_dataloader = get_dataloaders(model_name, batch_size) optimizer = AdamW(model.parameters(), lr=0.0001) lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=100, num_training_steps=len(train_dataloader) * 2, ) train_dataloader, eval_dataloader = accelerator.prepare(train_dataloader, eval_dataloader) return model, optimizer, train_dataloader, eval_dataloader, lr_scheduler def get_named_parameters(model): """ Same thing as `Accelerator.get_named_parameters` Returns a list of the named parameters of the model (extracted from parallel) """ from accelerate.utils import extract_model_from_parallel model = extract_model_from_parallel(model) return {n: p for n, p in model.named_parameters()} def evaluate_model(model, dataloader, metric, accelerator=None): "Turns model to .eval(), runs dataloader, calculates metric, then turns eval back on" model.eval() for step, batch in enumerate(dataloader): with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) references = batch["labels"] if accelerator is not None and accelerator.num_processes > 1: predictions, references = accelerator.gather_for_metrics((predictions, references)) metric.add_batch(predictions=predictions, references=references) return metric.compute()