recipes/smollm/sft/config.yaml (47 lines of code) (raw):

# Model arguments model_name_or_path: HuggingFaceTB/SmolLM-360M model_revision: main tokenizer_name_or_path: HuggingFaceTB/SmolLM-360M-Instruct # Custom tokenizer with <|im_start|> and <|im_end|> tokens torch_dtype: bfloat16 use_flash_attention_2: true # Data training arguments dataset_mixer: HuggingFaceTB/Magpie-Pro-300K-Filtered-H4: 1.0 HuggingFaceTB/self-oss-instruct-sc2-H4: 1.0 HuggingFaceTB/OpenHermes-2.5-H4: 0.001 HuggingFaceTB/everyday-conversations-llama3.1-2k: 1.0 HuggingFaceTB/instruct-data-basics-smollm-H4: 1.0 dataset_splits: - train_sft - test_sft preprocessing_num_workers: 36 # SFT trainer config bf16: true dataset_kwargs: add_special_tokens: false # We already wrap <bos> and <eos> in the chat template append_concat_token: false # No need to add <eos> across samples do_eval: true evaluation_strategy: epoch gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false hub_model_id: smollm-360M-instruct-new hub_strategy: every_save learning_rate: 1.0e-03 # 3e-4 log_level: info logging_steps: 5 logging_strategy: steps lr_scheduler_type: cosine max_seq_length: 2048 max_steps: -1 num_train_epochs: 1 output_dir: data/smollm-360M-instruct-new overwrite_output_dir: true per_device_eval_batch_size: 4 per_device_train_batch_size: 4 push_to_hub: true remove_unused_columns: true report_to: - tensorboard - wandb save_strategy: "no" seed: 42 warmup_ratio: 0.1