recipes/smollm/sft/config.yaml (47 lines of code) (raw):
# Model arguments
model_name_or_path: HuggingFaceTB/SmolLM-360M
model_revision: main
tokenizer_name_or_path: HuggingFaceTB/SmolLM-360M-Instruct # Custom tokenizer with <|im_start|> and <|im_end|> tokens
torch_dtype: bfloat16
use_flash_attention_2: true
# Data training arguments
dataset_mixer:
HuggingFaceTB/Magpie-Pro-300K-Filtered-H4: 1.0
HuggingFaceTB/self-oss-instruct-sc2-H4: 1.0
HuggingFaceTB/OpenHermes-2.5-H4: 0.001
HuggingFaceTB/everyday-conversations-llama3.1-2k: 1.0
HuggingFaceTB/instruct-data-basics-smollm-H4: 1.0
dataset_splits:
- train_sft
- test_sft
preprocessing_num_workers: 36
# SFT trainer config
bf16: true
dataset_kwargs:
add_special_tokens: false # We already wrap <bos> and <eos> in the chat template
append_concat_token: false # No need to add <eos> across samples
do_eval: true
evaluation_strategy: epoch
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
hub_model_id: smollm-360M-instruct-new
hub_strategy: every_save
learning_rate: 1.0e-03 # 3e-4
log_level: info
logging_steps: 5
logging_strategy: steps
lr_scheduler_type: cosine
max_seq_length: 2048
max_steps: -1
num_train_epochs: 1
output_dir: data/smollm-360M-instruct-new
overwrite_output_dir: true
per_device_eval_batch_size: 4
per_device_train_batch_size: 4
push_to_hub: true
remove_unused_columns: true
report_to:
- tensorboard
- wandb
save_strategy: "no"
seed: 42
warmup_ratio: 0.1