recipes/smollm2/dpo/config.yaml (37 lines of code) (raw):

# Model arguments model_name_or_path: loubnabnl/smollm2-1.7B-sft torch_dtype: bfloat16 # Data training arguments dataset_mixer: HuggingFaceH4/ultrafeedback_binarized: 1.0 dataset_splits: - train_prefs - test_prefs preprocessing_num_workers: 12 # DPOTrainer arguments bf16: true beta: 0.5 do_eval: true hub_private_repo: true eval_strategy: steps eval_steps: 100 gradient_accumulation_steps: 8 gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: False hub_model_id: smollm2-1.7B-dpo learning_rate: 1.0e-6 log_level: info logging_steps: 10 lr_scheduler_type: cosine max_length: 1024 max_prompt_length: 512 num_train_epochs: 3 optim: adamw_torch output_dir: data/smollm2-1.7B-dpo per_device_train_batch_size: 2 per_device_eval_batch_size: 4 push_to_hub: true report_to: - tensorboard - wandb save_strategy: "no" seed: 42 warmup_ratio: 0.1