recipes/starchat2-15b/dpo/config_v0.1.yaml (37 lines of code) (raw):

# Model arguments model_name_or_path: HuggingFaceH4/starchat2-15b-sft-v0.1 torch_dtype: bfloat16 # Data training arguments # For definitions, see: src/h4/training/config.py dataset_mixer: HuggingFaceH4/ultrafeedback_binarized: 1.0 HuggingFaceH4/orca_dpo_pairs: 1.0 dataset_splits: - train_prefs - test_prefs preprocessing_num_workers: 12 # DPOTrainer arguments bf16: true beta: 0.05 do_eval: true eval_strategy: steps eval_steps: 100 gradient_accumulation_steps: 8 gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: False hub_model_id: starchat2-15b-dpo-v0.1 learning_rate: 5.0e-7 log_level: info logging_steps: 10 lr_scheduler_type: cosine max_length: 1024 max_prompt_length: 512 num_train_epochs: 2 optim: adamw_torch output_dir: data/starchat2-15b-dpo-v0.1 per_device_train_batch_size: 2 per_device_eval_batch_size: 4 push_to_hub: true report_to: - tensorboard - wandb save_strategy: "no" seed: 42 warmup_ratio: 0.1