recipes/zephyr-141b-A35b/orpo/config_full.yaml (34 lines of code) (raw):

# Model arguments model_name_or_path: mistral-community/Mixtral-8x22B-v0.1 model_revision: main torch_dtype: bfloat16 attn_implementation: flash_attention_2 # Data training arguments chat_template: "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}" dataset_mixer: argilla/distilabel-capybara-dpo-7k-binarized: 1.0 dataset_splits: - train preprocessing_num_workers: 8 # ORPOTrainer arguments bf16: true beta: 0.05 gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: true hub_model_id: zephyr-orpo-141b-A35b learning_rate: 5.0e-6 log_level: info logging_steps: 10 lr_scheduler_type: inverse_sqrt max_length: 2048 max_prompt_length: 1792 num_train_epochs: 3 optim: adamw_bnb_8bit output_dir: data/zephyr-orpo-141b-A35b per_device_train_batch_size: 1 push_to_hub: true report_to: - tensorboard - wandb save_strategy: "no" seed: 42 warmup_steps: 100