recipes/zephyr-7b-gemma/sft/config_full.yaml (43 lines of code) (raw):

# Model arguments model_name_or_path: google/gemma-7b model_revision: main tokenizer_name_or_path: philschmid/gemma-tokenizer-chatml # Custom tokenizer with <|im_start|> and <|im_end|> tokens torch_dtype: bfloat16 attn_implementation: flash_attention_2 # Data training arguments dataset_mixer: HuggingFaceH4/deita-10k-v0-sft: 1.0 dataset_splits: - train_sft - test_sft preprocessing_num_workers: 12 # SFT trainer config bf16: true dataset_kwargs: add_special_tokens: false # We already wrap <bos> and <eos> in the chat template append_concat_token: false # No need to add <eos> across samples do_eval: true eval_strategy: epoch gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false hub_model_id: zephyr-7b-gemma-sft hub_strategy: every_save learning_rate: 2.0e-05 log_level: info logging_steps: 5 logging_strategy: steps lr_scheduler_type: cosine max_seq_length: 2048 max_steps: -1 num_train_epochs: 3 output_dir: data/zephyr-7b-gemma-sft overwrite_output_dir: true per_device_eval_batch_size: 4 per_device_train_batch_size: 4 push_to_hub: true remove_unused_columns: true report_to: - tensorboard - wandb save_strategy: "no" seed: 42 warmup_ratio: 0.1