in training/generate_images.py [0:0]
def main(args):
prompts = [
f"A chihuahua in {args.style_descriptor} style",
f"A tabby cat in {args.style_descriptor} style",
f"A portrait of chihuahua in {args.style_descriptor} style",
f"An apple on the table in {args.style_descriptor} style",
f"A banana on the table in {args.style_descriptor} style",
f"A church on the street in {args.style_descriptor} style",
f"A church in the mountain in {args.style_descriptor} style",
f"A church in the field in {args.style_descriptor} style",
f"A church on the beach in {args.style_descriptor} style",
f"A chihuahua walking on the street in {args.style_descriptor} style",
f"A tabby cat walking on the street in {args.style_descriptor} style",
f"A portrait of tabby cat in {args.style_descriptor} style",
f"An apple on the dish in {args.style_descriptor} style",
f"A banana on the dish in {args.style_descriptor} style",
f"A human walking on the street in {args.style_descriptor} style",
f"A temple on the street in {args.style_descriptor} style",
f"A temple in the mountain in {args.style_descriptor} style",
f"A temple in the field in {args.style_descriptor} style",
f"A temple on the beach in {args.style_descriptor} style",
f"A chihuahua walking in the forest in {args.style_descriptor} style",
f"A tabby cat walking in the forest in {args.style_descriptor} style",
f"A portrait of human face in {args.style_descriptor} style",
f"An apple on the ground in {args.style_descriptor} style",
f"A banana on the ground in {args.style_descriptor} style",
f"A human walking in the forest in {args.style_descriptor} style",
f"A cabin on the street in {args.style_descriptor} style",
f"A cabin in the mountain in {args.style_descriptor} style",
f"A cabin in the field in {args.style_descriptor} style",
f"A cabin on the beach in {args.style_descriptor} style"
]
logger.warning(f"generating image for {prompts}")
logger.warning(f"loading models")
pipe_args = {}
if args.load_transformer_from is not None:
pipe_args["transformer"] = UVit2DModel.from_pretrained(args.load_transformer_from)
pipe = AmusedPipeline.from_pretrained(
pretrained_model_name_or_path=args.pretrained_model_name_or_path,
revision=args.revision,
variant=args.variant,
**pipe_args
)
if args.load_transformer_lora_from is not None:
pipe.transformer = PeftModel.from_pretrained(
pipe.transformer, os.path.join(args.load_transformer_from), is_trainable=False
)
pipe.to(args.device)
logger.warning(f"generating images")
os.makedirs(args.write_images_to, exist_ok=True)
for prompt_idx in range(0, len(prompts), args.batch_size):
images = pipe(prompts[prompt_idx:prompt_idx+args.batch_size]).images
for image_idx, image in enumerate(images):
prompt = prompts[prompt_idx+image_idx]
image.save(os.path.join(args.write_images_to, prompt + ".png"))