in docker_images/k2/app/common.py [0:0]
def model_from_hfconfig(hf_repo, hf_config):
nn_model_filename = hf_hub_download(hf_repo, hf_config["nn_model_filename"])
token_filename = (
hf_hub_download(hf_repo, hf_config["token_filename"])
if "token_filename" in hf_config
else None
)
bpe_model_filename = (
hf_hub_download(hf_repo, hf_config["bpe_model_filename"])
if "bpe_model_filename" in hf_config
else None
)
decoding_method = hf_config.get("decoding_method", "greedy_search")
sample_rate = hf_config.get("sample_rate", 16000)
num_active_paths = hf_config.get("num_active_paths", 4)
assert decoding_method in ("greedy_search", "modified_beam_search"), decoding_method
if decoding_method == "modified_beam_search":
assert num_active_paths >= 1, num_active_paths
assert bpe_model_filename is not None or token_filename is not None
if bpe_model_filename:
assert token_filename is None
if token_filename:
assert bpe_model_filename is None
return OfflineAsr(
nn_model_filename,
bpe_model_filename,
token_filename,
decoding_method,
num_active_paths,
sample_rate,
)