def __init__()

in docker_images/timm/app/pipelines/image_classification.py [0:0]


    def __init__(self, model_id: str):
        self.model = timm.create_model(f"hf_hub:{model_id}", pretrained=True)
        self.transform = create_transform(
            **resolve_model_data_config(self.model, use_test_size=True)
        )
        self.top_k = min(self.model.num_classes, 5)
        self.model.eval()

        self.dataset_info = None
        label_names = self.model.pretrained_cfg.get("label_names", None)
        label_descriptions = self.model.pretrained_cfg.get("label_descriptions", None)

        if label_names is None:
            # if no labels added to config, use imagenet labeller in timm
            imagenet_subset = infer_imagenet_subset(self.model)
            if imagenet_subset:
                self.dataset_info = ImageNetInfo(imagenet_subset)
            else:
                # fallback label names
                label_names = [f"LABEL_{i}" for i in range(self.model.num_classes)]

        if self.dataset_info is None:
            self.dataset_info = CustomDatasetInfo(
                label_names=label_names,
                label_descriptions=label_descriptions,
            )