in docker_images/diffusers/app/pipelines/text_to_image.py [0:0]
def _process_req(self, inputs, **kwargs):
# only one image per prompt is supported
kwargs["num_images_per_prompt"] = 1
if "num_inference_steps" not in kwargs:
default_num_steps = os.getenv("DEFAULT_NUM_INFERENCE_STEPS")
if default_num_steps:
kwargs["num_inference_steps"] = int(default_num_steps)
elif self.is_karras_compatible:
kwargs["num_inference_steps"] = 20
# Else, don't specify anything, leave the default behaviour
if "guidance_scale" not in kwargs:
default_guidance_scale = os.getenv("DEFAULT_GUIDANCE_SCALE")
if default_guidance_scale is not None:
kwargs["guidance_scale"] = float(default_guidance_scale)
# Else, don't specify anything, leave the default behaviour
if "seed" in kwargs:
seed = int(kwargs["seed"])
generator = torch.Generator().manual_seed(seed)
kwargs["generator"] = generator
kwargs.pop("seed")
images = self.ldm(inputs, **kwargs)["images"]
return images[0]