docker_images/adapter_transformers/app/pipelines/text_classification.py (18 lines of code) (raw):
from typing import Dict, List
from app.pipelines import Pipeline
from transformers import (
TextClassificationPipeline as TransformersClassificationPipeline,
)
class TextClassificationPipeline(Pipeline):
def __init__(
self,
adapter_id: str,
):
self.pipeline = self._load_pipeline_instance(
TransformersClassificationPipeline, adapter_id
)
def __call__(self, inputs: str) -> List[Dict[str, float]]:
"""
Args:
inputs (:obj:`str`):
a string containing some text
Return:
A :obj:`list`:. The object returned should be like [{"label": 0.9939950108528137}] containing :
- "label": A string representing what the label/class is. There can be multiple labels.
- "score": A score between 0 and 1 describing how confident the model is for this label/class.
"""
try:
return self.pipeline(inputs, return_all_scores=True)
except Exception as e:
raise ValueError(e)