docker_images/adapter_transformers/app/pipelines/token_classification.py (24 lines of code) (raw):

from typing import Any, Dict, List import numpy as np from app.pipelines import Pipeline from transformers import ( TokenClassificationPipeline as TransformersTokenClassificationPipeline, ) class TokenClassificationPipeline(Pipeline): def __init__( self, adapter_id: str, ): self.pipeline = self._load_pipeline_instance( TransformersTokenClassificationPipeline, adapter_id ) def __call__(self, inputs: str) -> List[Dict[str, Any]]: """ Args: inputs (:obj:`str`): a string containing some text Return: A :obj:`list`:. The object returned should be like [{"entity_group": "XXX", "word": "some word", "start": 3, "end": 6, "score": 0.82}] containing : - "entity_group": A string representing what the entity is. - "word": A rubstring of the original string that was detected as an entity. - "start": the offset within `input` leading to `answer`. context[start:stop] == word - "end": the ending offset within `input` leading to `answer`. context[start:stop] === word - "score": A score between 0 and 1 describing how confident the model is for this entity. """ outputs = self.pipeline(inputs) # convert all numpy types to plain Python floats for output in outputs: # remove & rename keys output.pop("index") entity = output.pop("entity") for k, v in output.items(): if isinstance(v, np.generic): output[k] = v.item() output["entity_group"] = entity return outputs