docker_images/asteroid/app/pipelines/audio_to_audio.py (15 lines of code) (raw):

from typing import List, Tuple import numpy as np from app.pipelines import Pipeline from asteroid import separate from asteroid.models import BaseModel class AudioToAudioPipeline(Pipeline): def __init__(self, model_id: str): self.model = BaseModel.from_pretrained(model_id) self.sampling_rate = self.model.sample_rate def __call__(self, inputs: np.array) -> Tuple[np.array, int, List[str]]: # Pass wav as [batch, n_chan, time]; here: [1, 1, time] """ Args: inputs (:obj:`np.array`): The raw waveform of audio received. By default sampled at `self.sampling_rate`. The shape of this array is `T`, where `T` is the time axis Return: A :obj:`tuple` containing: - :obj:`np.array`: The return shape of the array must be `C'`x`T'` - a :obj:`int`: the sampling rate as an int in Hz. - a :obj:`List[str]`: the annotation for each out channel. This can be the name of the instruments for audio source separation or some annotation for speech enhancement. The length must be `C'`. """ separated = separate.numpy_separate(self.model, inputs.reshape((1, 1, -1))) # FIXME: how to deal with multiple sources? out = separated[0] n = out.shape[0] labels = [f"label_{i}" for i in range(n)] return separated[0], int(self.model.sample_rate), labels