docker_images/asteroid/app/pipelines/audio_to_audio.py (15 lines of code) (raw):
from typing import List, Tuple
import numpy as np
from app.pipelines import Pipeline
from asteroid import separate
from asteroid.models import BaseModel
class AudioToAudioPipeline(Pipeline):
def __init__(self, model_id: str):
self.model = BaseModel.from_pretrained(model_id)
self.sampling_rate = self.model.sample_rate
def __call__(self, inputs: np.array) -> Tuple[np.array, int, List[str]]:
# Pass wav as [batch, n_chan, time]; here: [1, 1, time]
"""
Args:
inputs (:obj:`np.array`):
The raw waveform of audio received. By default sampled at `self.sampling_rate`.
The shape of this array is `T`, where `T` is the time axis
Return:
A :obj:`tuple` containing:
- :obj:`np.array`:
The return shape of the array must be `C'`x`T'`
- a :obj:`int`: the sampling rate as an int in Hz.
- a :obj:`List[str]`: the annotation for each out channel.
This can be the name of the instruments for audio source separation
or some annotation for speech enhancement. The length must be `C'`.
"""
separated = separate.numpy_separate(self.model, inputs.reshape((1, 1, -1)))
# FIXME: how to deal with multiple sources?
out = separated[0]
n = out.shape[0]
labels = [f"label_{i}" for i in range(n)]
return separated[0], int(self.model.sample_rate), labels