docker_images/common/app/pipelines/audio_classification.py (13 lines of code) (raw):
from typing import Dict, List
import numpy as np
from app.pipelines import Pipeline
class AudioClassificationPipeline(Pipeline):
def __init__(self, model_id: str):
# IMPLEMENT_THIS
# Preload all the elements you are going to need at inference.
# For instance your model, processors, tokenizer that might be needed.
# This function is only called once, so do all the heavy processing I/O here
# IMPLEMENT_THIS : Please define a `self.sampling_rate` for this pipeline
# to automatically read the input correctly
self.sampling_rate = 16000
raise NotImplementedError(
"Please implement AudioClassificationPipeline __init__ function"
)
def __call__(self, inputs: np.array) -> List[Dict[str, float]]:
"""
Args:
inputs (:obj:`np.array`):
The raw waveform of audio received. By default at 16KHz.
Return:
A :obj:`list`:. The object returned should be a list like [{"label": "text", "score": 0.9939950108528137}] containing :
- "label": A string representing what the label/class is. There can be multiple labels.
- "score": A score between 0 and 1 describing how confident the model is for this label/class.
"""
# IMPLEMENT_THIS
raise NotImplementedError(
"Please implement AudioClassificationPipeline __init__ function"
)