docker_images/common/app/pipelines/audio_classification.py (13 lines of code) (raw):

from typing import Dict, List import numpy as np from app.pipelines import Pipeline class AudioClassificationPipeline(Pipeline): def __init__(self, model_id: str): # IMPLEMENT_THIS # Preload all the elements you are going to need at inference. # For instance your model, processors, tokenizer that might be needed. # This function is only called once, so do all the heavy processing I/O here # IMPLEMENT_THIS : Please define a `self.sampling_rate` for this pipeline # to automatically read the input correctly self.sampling_rate = 16000 raise NotImplementedError( "Please implement AudioClassificationPipeline __init__ function" ) def __call__(self, inputs: np.array) -> List[Dict[str, float]]: """ Args: inputs (:obj:`np.array`): The raw waveform of audio received. By default at 16KHz. Return: A :obj:`list`:. The object returned should be a list like [{"label": "text", "score": 0.9939950108528137}] containing : - "label": A string representing what the label/class is. There can be multiple labels. - "score": A score between 0 and 1 describing how confident the model is for this label/class. """ # IMPLEMENT_THIS raise NotImplementedError( "Please implement AudioClassificationPipeline __init__ function" )