docker_images/common/app/pipelines/audio_to_audio.py (13 lines of code) (raw):

from typing import List, Tuple import numpy as np from app.pipelines import Pipeline class AudioToAudioPipeline(Pipeline): def __init__(self, model_id: str): # IMPLEMENT_THIS # Preload all the elements you are going to need at inference. # For instance your model, processors, tokenizer that might be needed. # This function is only called once, so do all the heavy processing I/O here # IMPLEMENT_THIS : Please define a `self.sampling_rate` for this pipeline # to automatically read the input correctly self.sampling_rate = 16000 raise NotImplementedError( "Please implement AudioToAudioPipeline __init__ function" ) def __call__(self, inputs: np.array) -> Tuple[np.array, int, List[str]]: """ Args: inputs (:obj:`np.array`): The raw waveform of audio received. By default sampled at `self.sampling_rate`. The shape of this array is `T`, where `T` is the time axis Return: A :obj:`tuple` containing: - :obj:`np.array`: The return shape of the array must be `C'`x`T'` - a :obj:`int`: the sampling rate as an int in Hz. - a :obj:`List[str]`: the annotation for each out channel. This can be the name of the instruments for audio source separation or some annotation for speech enhancement. The length must be `C'`. """ # IMPLEMENT_THIS raise NotImplementedError( "Please implement AudioToAudioPipeline __call__ function" )