docker_images/common/app/pipelines/tabular_regression_pipeline.py (13 lines of code) (raw):

from typing import Dict, List, Union from app.pipelines import Pipeline class TabularRegressionPipeline(Pipeline): def __init__(self, model_id: str): # IMPLEMENT_THIS # Preload all the elements you are going to need at inference. # For instance your model, processors, tokenizer that might be needed. # This function is only called once, so do all the heavy processing I/O here raise NotImplementedError( "Please implement TabularRegressionPipeline __init__ function" ) def __call__( self, inputs: Dict[str, Dict[str, List[Union[int, str, float]]]] ) -> List[float]: """ Args: inputs (:obj:`dict`): a dictionary containing a key 'data' mapping to a dict in which the values represent each column. Return: A :obj:`list` of float: The regression output for each row. """ # IMPLEMENT_THIS raise NotImplementedError( "Please implement TabularRegressionPipeline __init__ function" )