docker_images/common/app/pipelines/tabular_regression_pipeline.py (13 lines of code) (raw):
from typing import Dict, List, Union
from app.pipelines import Pipeline
class TabularRegressionPipeline(Pipeline):
def __init__(self, model_id: str):
# IMPLEMENT_THIS
# Preload all the elements you are going to need at inference.
# For instance your model, processors, tokenizer that might be needed.
# This function is only called once, so do all the heavy processing I/O here
raise NotImplementedError(
"Please implement TabularRegressionPipeline __init__ function"
)
def __call__(
self, inputs: Dict[str, Dict[str, List[Union[int, str, float]]]]
) -> List[float]:
"""
Args:
inputs (:obj:`dict`):
a dictionary containing a key 'data' mapping to a dict in which
the values represent each column.
Return:
A :obj:`list` of float: The regression output for each row.
"""
# IMPLEMENT_THIS
raise NotImplementedError(
"Please implement TabularRegressionPipeline __init__ function"
)