docker_images/common/app/pipelines/text_classification.py (14 lines of code) (raw):

from typing import Dict, List from app.pipelines import Pipeline class TextClassificationPipeline(Pipeline): def __init__( self, model_id: str, ): # IMPLEMENT_THIS # Preload all the elements you are going to need at inference. # For instance your model, processors, tokenizer that might be needed. # This function is only called once, so do all the heavy processing I/O here raise NotImplementedError( "Please implement TextClassificationPipeline __init__ function" ) def __call__(self, inputs: str) -> List[Dict[str, float]]: """ Args: inputs (:obj:`str`): a string containing some text Return: A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing: - "label": A string representing what the label/class is. There can be multiple labels. - "score": A score between 0 and 1 describing how confident the model is for this label/class. """ # IMPLEMENT_THIS raise NotImplementedError( "Please implement TextClassificationPipeline __call__ function" )