docker_images/sentence_transformers/app/pipelines/feature_extraction.py (14 lines of code) (raw):

import os from typing import List from app.pipelines import Pipeline from sentence_transformers import SentenceTransformer class FeatureExtractionPipeline(Pipeline): def __init__( self, model_id: str, ): self.model = SentenceTransformer( model_id, use_auth_token=os.getenv("HF_API_TOKEN") ) def __call__(self, inputs: str) -> List[float]: """ Args: inputs (:obj:`str`): a string to get the features of. Return: A :obj:`list` of floats: The features computed by the model. """ return self.model.encode(inputs).tolist()