docker_images/spacy/app/pipelines/text_classification.py (30 lines of code) (raw):
import os
import subprocess
import sys
from typing import Dict, List
from app.pipelines import Pipeline
class TextClassificationPipeline(Pipeline):
def __init__(
self,
model_id: str,
):
# At the time, only public models from spaCy are allowed in the inference API.
full_model_path = model_id.split("/")
if len(full_model_path) != 2:
raise ValueError(
f"Invalid model_id: {model_id}. It should have a namespace (:namespace:/:model_name:)"
)
namespace, model_name = full_model_path
hf_endpoint = os.getenv("HF_ENDPOINT", "https://huggingface.co")
package = f"{hf_endpoint}/{namespace}/{model_name}/resolve/main/{model_name}-any-py3-none-any.whl"
cache_dir = os.environ["PIP_CACHE"]
subprocess.check_call(
[sys.executable, "-m", "pip", "install", "--cache-dir", cache_dir, package]
)
import spacy
self.model = spacy.load(model_name)
def __call__(self, inputs: str) -> List[List[Dict[str, float]]]:
"""
Args:
inputs (:obj:`str`):
a string containing some text
Return:
A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing :
- "label": A string representing what the label/class is. There can be multiple labels.
- "score": A score between 0 and 1 describing how confident the model is for this label/class.
"""
doc = self.model(inputs)
categories = []
for cat, score in doc.cats.items():
categories.append({"label": cat, "score": score})
return [categories]