docker_images/span_marker/app/pipelines/token_classification.py (20 lines of code) (raw):
from typing import Any, Dict, List
from app.pipelines import Pipeline
from span_marker import SpanMarkerModel
class TokenClassificationPipeline(Pipeline):
def __init__(
self,
model_id: str,
) -> None:
self.model = SpanMarkerModel.from_pretrained(model_id)
def __call__(self, inputs: str) -> List[Dict[str, Any]]:
"""
Args:
inputs (:obj:`str`):
a string containing some text
Return:
A :obj:`list`:. The object returned should be like [{"entity_group": "XXX", "word": "some word", "start": 3, "end": 6, "score": 0.82}] containing :
- "entity_group": A string representing what the entity is.
- "word": A rubstring of the original string that was detected as an entity.
- "start": the offset within `input` leading to `answer`. context[start:stop] == word
- "end": the ending offset within `input` leading to `answer`. context[start:stop] === word
- "score": A score between 0 and 1 describing how confident the model is for this entity.
"""
return [
{
"entity_group": entity["label"],
"word": entity["span"],
"start": entity["char_start_index"],
"end": entity["char_end_index"],
"score": entity["score"],
}
for entity in self.model.predict(inputs)
]