docker_images/stanza/app/pipelines/token_classification.py (42 lines of code) (raw):
import os
from typing import Any, Dict, List
import stanza
from app.pipelines import Pipeline
from stanza import Pipeline as pipeline
class TokenClassificationPipeline(Pipeline):
def __init__(
self,
model_id: str,
):
namespace, model_name = model_id.split("/")
path = os.path.join(
os.environ.get("HUGGINGFACE_HUB_CACHE", "."), namespace, model_name
)
lang = model_name.replace("stanza-", "")
stanza.download(model_dir=path, lang=lang)
self.model = pipeline(model_dir=path, lang=lang)
def __call__(self, inputs: str) -> List[Dict[str, Any]]:
"""
Args:
inputs (:obj:`str`):
a string containing some text
Return:
A :obj:`list`:. The object returned should be like [{"entity_group": "XXX", "word": "some word", "start": 3, "end": 6, "score": 0.82}] containing :
- "entity_group": A string representing what the entity is.
- "word": A rubstring of the original string that was detected as an entity.
- "start": the offset within `input` leading to `answer`. context[start:stop] == word
- "end": the ending offset within `input` leading to `answer`. context[start:stop] === word
- "score": A score between 0 and 1 describing how confident the model is for this entity.
"""
doc = self.model(inputs)
entities = []
if "ner_model_path" in self.model.config.keys():
for entity in doc.entities:
entity_dict = {
"entity_group": entity.type,
"word": entity.text,
"start": entity.start_char,
"end": entity.end_char,
"score": 1.0,
}
entities.append(entity_dict)
else:
for sent in doc.sentences:
for entity in sent.words:
entity_dict = {
"entity_group": entity.upos,
"word": entity.text,
"start": entity.start_char,
"end": entity.end_char,
"score": 1.0,
}
entities.append(entity_dict)
return entities